Analyse en composantes principales (ACP) avec R et FactoMineR sur les données relatives à la propriété forestière (sources : https://agreste.agriculture.gouv.fr/agreste-web/download/publication/publie/ChdAgr196/ChdAgr196.pdf)
Avec mes fichiers exemples, préférez les paramètres nord-américains (“.” séparateur de décimales, “,” séparateur de miliers).
Salle C210, identifiant => “geographie2” !
### setwd("D:/Users/geographie2/vgodard/ADD/proforest/R")
### respecter ce cheminement si "geographie2"
### getwd()
# Remove all objects
rm(list = ls() )
propfor <- read.table("PropFor19.csv",
header=TRUE,
sep=";",
dec=".",### Si param. régio. non US, remplacer le "." par une ","
row.names=1,
check.names=FALSE,
fileEncoding="latin1",
stringsAsFactors = TRUE) # si stringsAsFactors = FALSE on perd les modalités
Installer et exécuter préalablement la librairie “Hmisc”
### Avec la librairie Hmisc
## install.packages("Hmisc") ## si pas déjà installé !
library(Hmisc)
Script de la matrice des corrélations arrondie à un chiffre après la virgule et matrice des significativités des corrélations (p-value).
rcorr(as.matrix(propfor[,1:3]), type=c("pearson"))
## ForDom log(ForColec) log(ForPriv)
## ForDom 1.00 0.41 0.06
## log(ForColec) 0.41 1.00 0.30
## log(ForPriv) 0.06 0.30 1.00
##
## n= 90
##
##
## P
## ForDom log(ForColec) log(ForPriv)
## ForDom 0.0000 0.5946
## log(ForColec) 0.0000 0.0036
## log(ForPriv) 0.5946 0.0036
Faire un copier-coller dans un tableur pour mettre en évidence les corrélations positives ou négatives les plus élevées.
Si ce n’est déjà fait, installer le package “FactoMineR”, puis le charger
## install.packages("FactoMineR")
library("FactoMineR")
L’ACP avec tous les éléments actifs (90 lignes et 3 variables)
res.propfor.pca <- PCA(propfor[1:90,1:3],
quanti.sup=NULL,
quali.sup=NULL,
ncp = 3,
scale.unit = TRUE,
graph = TRUE)
Si ce n’est déjà fait, installer le package “factoextra”, puis le charger
## install.packages("factoextra")
library("factoextra")
Si on veut connaître tous les résultats de la fonction ACP dans Factominer et/ou factoextra :
### Listage des résultats
print(res.propfor.pca)
## **Results for the Principal Component Analysis (PCA)**
## The analysis was performed on 90 individuals, described by 3 variables
## *The results are available in the following objects:
##
## name description
## 1 "$eig" "eigenvalues"
## 2 "$var" "results for the variables"
## 3 "$var$coord" "coord. for the variables"
## 4 "$var$cor" "correlations variables - dimensions"
## 5 "$var$cos2" "cos2 for the variables"
## 6 "$var$contrib" "contributions of the variables"
## 7 "$ind" "results for the individuals"
## 8 "$ind$coord" "coord. for the individuals"
## 9 "$ind$cos2" "cos2 for the individuals"
## 10 "$ind$contrib" "contributions of the individuals"
## 11 "$call" "summary statistics"
## 12 "$call$centre" "mean of the variables"
## 13 "$call$ecart.type" "standard error of the variables"
## 14 "$call$row.w" "weights for the individuals"
## 15 "$call$col.w" "weights for the variables"
La somme des eigenvalues égale le nombre d’axes (ici 3).
Une eigenvalue > 1 a plus d’information (d’inertie) qu’une variable d’origine.
eig.val <- get_eigenvalue(res.propfor.pca)
eig.val
## eigenvalue variance.percent cumulative.variance.percent
## Dim.1 1.5405275 51.35092 51.35092
## Dim.2 0.9457900 31.52633 82.87725
## Dim.3 0.5136826 17.12275 100.00000
Interprétation des coordonnées des variables sur les axes factoriels.
res.propfor.pca$var$coord[, 1:3] ### [toutes les lignes ; colonnes 1 à 3, cf résultats *eigenvalue*]
## Dim.1 Dim.2 Dim.3
## ForDom 0.7101109 -0.57337688 0.4086337
## log(ForColec) 0.8537348 -0.03277492 -0.5196756
## log(ForPriv) 0.5544429 0.78482783 0.2768363
S’il y a des variables qualitatives supplémentaires.
res.propfor.pca$quali.sup$coord ## coord. for the supplementary categories
## NULL
A évaluer au regard des valeurs test.
res.propfor.pca$quali.sup$v.test ## v-test of the supplementary categories, signif. si > 1.96 (on arrondi à 2 !)
## NULL
Interprétation des coordonnées des individus sur les axes factoriels
res.propfor.pca$ind$coord[1:90 , 1:3] ### [ligne 1 à 90 ; colonnes 1 à 3]
## Dim.1 Dim.2 Dim.3
## 1 0.321212143 0.700501924 -1.1254262464
## 2 0.260983791 -0.689715988 0.5295990695
## 3 -0.293496515 -0.367895348 0.8849719606
## 4 3.027958367 -0.899393400 1.4535621207
## 5 1.130119021 -0.542609092 -0.5027397835
## 6 0.905821281 0.545407371 -0.6485537893
## 7 0.538510384 1.203564947 0.1160316607
## 8 0.881823340 -0.827655818 -0.2760269465
## 9 1.303038419 -0.289132333 0.3409403087
## 10 0.312131789 -0.086762031 -0.6573083193
## 11 0.853591779 0.033111910 -0.0642857751
## 12 0.340139975 1.236182078 0.2595609055
## 13 -0.279018231 0.232285982 -1.1699060494
## 14 -2.007769725 -0.600234258 -0.0411737797
## 15 -0.002617325 0.823325503 -0.8021855826
## 16 -1.182054102 0.585235554 0.5260770807
## 17 -0.901561640 0.234818935 0.1954561858
## 18 0.225371226 0.487805238 0.2275392881
## 19 0.185793357 1.703861429 -0.0732631668
## 21 2.353233380 -0.615789603 0.3234861011
## 22 -1.269161606 0.191140360 0.0002190839
## 23 -0.190044806 0.921264488 -0.0138711338
## 24 -0.426236976 2.289845407 1.1634143005
## 25 0.539922448 0.280675640 -1.4524222488
## 26 1.863533592 0.036078821 0.6764722249
## 27 -0.436188962 0.252250748 0.3072186633
## 28 -1.926427754 -0.325960526 0.8511660084
## 29 -1.359188296 0.005304792 0.0049828282
## 30 1.084567894 0.281518055 -0.0636296292
## 31 0.158977104 -0.061226070 -0.6747578243
## 32 -1.164924896 0.308807871 -0.2026903711
## 33 1.302840847 1.691192992 0.9563458772
## 34 0.803421385 0.322838872 0.3429780419
## 35 -1.591026901 -0.633721800 0.0493332252
## 36 -0.754237411 0.231651035 0.4982012850
## 37 -0.259567057 0.675727808 0.0729985051
## 38 1.214849299 0.542789174 -0.2845922540
## 39 1.133484935 -0.251825072 -0.7325085327
## 40 1.780238680 1.822750912 0.7670201932
## 41 -0.604429019 0.791742519 1.5199866046
## 42 -0.595384843 0.848818029 -0.3928752438
## 43 0.077916324 1.117518270 -0.3954925723
## 44 -2.140272525 -0.331833531 0.4215250187
## 45 -0.116501502 -0.440437768 2.0421972460
## 46 -0.840002494 1.583116582 0.6579533953
## 47 -1.012287975 0.867804745 0.2196405621
## 48 1.156948570 0.302990190 0.4105519885
## 49 -1.313581482 0.223244911 0.0669066507
## 50 -2.385670889 -1.120189216 -0.5609615984
## 51 1.521099009 -0.464094218 -0.3883232126
## 52 0.189954813 0.063728941 -0.1800587351
## 53 -2.484029999 -0.693457027 -0.0099534127
## 54 0.977032629 -1.486356978 -0.6421018630
## 55 1.884656917 -1.695721436 0.0140727581
## 56 -1.106384716 0.657784106 0.1919310502
## 57 2.231995893 -3.019633612 0.9725779386
## 58 1.112714514 0.357906214 0.0595876312
## 59 -1.480809624 -2.064974863 -0.1977601861
## 60 0.401053231 -0.868584100 0.4841261200
## 61 -0.631330577 -0.740002321 0.7654479106
## 62 -1.695176641 -0.933652230 -0.1868913487
## 63 0.526009684 1.459501116 -0.5201616831
## 64 0.412784030 1.005841524 -1.2077850811
## 65 0.033506177 -0.095269725 -1.3809060577
## 66 0.722789686 -0.627164787 0.0279847802
## 67 1.626161715 -2.587976107 0.0352427761
## 68 0.323916215 -1.444826403 -1.3310923690
## 69 -1.300623851 0.136425607 -0.4194342571
## 70 0.611990219 0.186029017 -1.4183572944
## 71 0.637069025 0.464596382 -0.3830259873
## 72 -1.002950721 0.026237835 0.7431297486
## 73 0.503272332 0.434388205 -1.1944288980
## 74 0.337518638 0.714179588 -1.0176236950
## 76 0.043516549 -1.688921342 1.0209487007
## 77 0.445800346 -0.652663880 0.7080953736
## 79 -2.449229068 -0.711273799 0.6959286709
## 80 -2.042315646 -0.369199264 0.3369241055
## 81 0.210405420 0.559479301 -0.1337460891
## 82 -2.202418057 0.130052096 0.6424435062
## 83 1.500385016 1.092873678 0.1696997975
## 84 0.141210831 0.086449425 -0.9398084977
## 85 -2.352147436 -1.239051518 0.0223457310
## 86 -1.240510344 0.454439782 0.6293804993
## 87 -0.631764053 1.083932554 -0.0727827746
## 88 2.393432125 -1.568481490 0.3163626707
## 89 0.866313349 0.709072417 -0.2997954640
## 90 -1.897510681 -2.092601213 -2.0412996429
## 110 0.659378223 -0.841669245 0.8109789110
## 2A 0.854408381 0.701895377 -0.2955742584
## 2B 0.644050056 0.269971156 -0.1379634093
Interprétation des contributions des variables sur les axes factoriels.
res.propfor.pca$var$contrib[, 1:3] ### [toutes les lignes ; colonnes toutes, cf résultats *eigenvalue*] pour rechercher les plus contributives dans un tableur.
## Dim.1 Dim.2 Dim.3
## ForDom 32.73278 34.7604709 32.50675
## log(ForColec) 47.31257 0.1135765 52.57386
## log(ForPriv) 19.95466 65.1259526 14.91939
Interprétation des contributions des individus sur les axes factoriels.
res.propfor.pca$ind$contrib[, 1:3] ### [ligne toutes ; colonnes toutes] pour rechercher les plus contributifs dans un tableur.
## Dim.1 Dim.2 Dim.3
## 1 7.441696e-02 5.764763e-01 2.739661e+00
## 2 4.912642e-02 5.588604e-01 6.066764e-01
## 3 6.212894e-02 1.590052e-01 1.694032e+00
## 4 6.612837e+00 9.503032e-01 4.570144e+00
## 5 9.211628e-01 3.458891e-01 5.467001e-01
## 6 5.917974e-01 3.494659e-01 9.098183e-01
## 7 2.091588e-01 1.701774e+00 2.912163e-02
## 8 5.608558e-01 8.047525e-01 1.648032e-01
## 9 1.224623e+00 9.821009e-02 2.514313e-01
## 10 7.026904e-02 8.843460e-03 9.345465e-01
## 11 5.255191e-01 1.288046e-03 8.939072e-03
## 12 8.344559e-02 1.795261e+00 1.457274e-01
## 13 5.615045e-02 6.338825e-02 2.960497e+00
## 14 2.907474e+00 4.232572e-01 3.666943e-03
## 15 4.940869e-06 7.963536e-01 1.391914e+00
## 16 1.007773e+00 4.023687e-01 5.986341e-01
## 17 5.862447e-01 6.477822e-02 8.263452e-02
## 18 3.663405e-02 2.795476e-01 1.119890e-01
## 19 2.489708e-02 3.410604e+00 1.161005e-02
## 21 3.994092e+00 4.454793e-01 2.263466e-01
## 22 1.161775e+00 4.292078e-02 1.038206e-07
## 23 2.604954e-02 9.970833e-01 4.161852e-04
## 24 1.310359e-01 6.159921e+00 2.927733e+00
## 25 2.102572e-01 9.254911e-02 4.562979e+00
## 26 2.504739e+00 1.529211e-03 9.898346e-01
## 27 1.372263e-01 7.475284e-02 2.041540e-01
## 28 2.676662e+00 1.248225e-01 1.567080e+00
## 29 1.332439e+00 3.305975e-05 5.370497e-05
## 30 8.484017e-01 9.310549e-02 8.757526e-03
## 31 1.822876e-02 4.403881e-03 9.848238e-01
## 32 9.787773e-01 1.120313e-01 8.886462e-02
## 33 1.224252e+00 3.360076e+00 1.978302e+00
## 34 4.655591e-01 1.224431e-01 2.544458e-01
## 35 1.825757e+00 4.718023e-01 5.264313e-03
## 36 4.103025e-01 6.304219e-02 5.368740e-01
## 37 4.859451e-02 5.364217e-01 1.152632e-02
## 38 1.064469e+00 3.461188e-01 1.751898e-01
## 39 9.266581e-01 7.450076e-02 1.160615e+00
## 40 2.285833e+00 3.903170e+00 1.272554e+00
## 41 2.634988e-01 7.364287e-01 4.997378e+00
## 42 2.556723e-01 8.464318e-01 3.338658e-01
## 43 4.378698e-03 1.467142e+00 3.383291e-01
## 44 3.303895e+00 1.293610e-01 3.843345e-01
## 45 9.789288e-03 2.278935e-01 9.021070e+00
## 46 5.089196e-01 2.944344e+00 9.363817e-01
## 47 7.390881e-01 8.847220e-01 1.043489e-01
## 48 9.654197e-01 1.078499e-01 3.645852e-01
## 49 1.244521e+00 5.854987e-02 9.682806e-03
## 50 4.104962e+00 1.474163e+00 6.806580e-01
## 51 1.668795e+00 2.530318e-01 3.261740e-01
## 52 2.602487e-02 4.771294e-03 7.012794e-02
## 53 4.450427e+00 5.649394e-01 2.142924e-04
## 54 6.885035e-01 2.595428e+00 8.918063e-01
## 55 2.561844e+00 3.378095e+00 4.283720e-04
## 56 8.828774e-01 5.083110e-01 7.968070e-02
## 57 3.593146e+00 1.071202e+01 2.046028e+00
## 58 8.930084e-01 1.504878e-01 7.680242e-03
## 59 1.581563e+00 5.009476e+00 8.459416e-02
## 60 1.160091e-01 8.863118e-01 5.069670e-01
## 61 2.874761e-01 6.433228e-01 1.267342e+00
## 62 2.072612e+00 1.024078e+00 7.555115e-02
## 63 1.995609e-01 2.502486e+00 5.852473e-01
## 64 1.228949e-01 1.188562e+00 3.155310e+00
## 65 8.097255e-04 1.066283e-02 4.124686e+00
## 66 3.768009e-01 4.620895e-01 1.693973e-03
## 67 1.907285e+00 7.868343e+00 2.686599e-03
## 68 7.567517e-02 2.452416e+00 3.832473e+00
## 69 1.220089e+00 2.186526e-02 3.805314e-01
## 70 2.701326e-01 4.065596e-02 4.351450e+00
## 71 2.927258e-01 2.535797e-01 3.173359e-01
## 72 7.255164e-01 8.087583e-04 1.194516e+00
## 73 1.826813e-01 2.216761e-01 3.085910e+00
## 74 8.216438e-02 5.992081e-01 2.239944e+00
## 76 1.365831e-03 3.351056e+00 2.254605e+00
## 77 1.433405e-01 5.004284e-01 1.084542e+00
## 79 4.326601e+00 5.943420e-01 1.047592e+00
## 80 3.008387e+00 1.601343e-01 2.455426e-01
## 81 3.193022e-02 3.677315e-01 3.869233e-02
## 82 3.498546e+00 1.986998e-02 8.927555e-01
## 83 1.623654e+00 1.403146e+00 6.229100e-02
## 84 1.438216e-02 8.779848e-03 1.910475e+00
## 85 3.990406e+00 1.803605e+00 1.080070e-03
## 86 1.109913e+00 2.426138e-01 8.568193e-01
## 87 2.878710e-01 1.380280e+00 1.145829e-02
## 88 4.131714e+00 2.890158e+00 2.164877e-01
## 89 5.413000e-01 5.906687e-01 1.944074e-01
## 90 2.596908e+00 5.144412e+00 9.013141e+00
## 110 3.135864e-01 8.322345e-01 1.422597e+00
## 2A 5.265251e-01 5.787721e-01 1.889713e-01
## 2B 2.991764e-01 8.562440e-02 4.117091e-02
Interprétation des COS2 des variables sur les axes factoriels.
res.propfor.pca$var$contrib[, 1:3] ### [toutes les lignes ; colonnes toutes, cf résultats *eigenvalue*] pour rechercher les plus contributives dans un tableur.
## Dim.1 Dim.2 Dim.3
## ForDom 32.73278 34.7604709 32.50675
## log(ForColec) 47.31257 0.1135765 52.57386
## log(ForPriv) 19.95466 65.1259526 14.91939
Interprétation des qualités de représentation des individus sur les axes factoriels.
res.propfor.pca$ind$contrib[, 1:3] ### [ligne toutes ; colonnes toutes] pour rechercher les plus contributifs dans un tableur.
## Dim.1 Dim.2 Dim.3
## 1 7.441696e-02 5.764763e-01 2.739661e+00
## 2 4.912642e-02 5.588604e-01 6.066764e-01
## 3 6.212894e-02 1.590052e-01 1.694032e+00
## 4 6.612837e+00 9.503032e-01 4.570144e+00
## 5 9.211628e-01 3.458891e-01 5.467001e-01
## 6 5.917974e-01 3.494659e-01 9.098183e-01
## 7 2.091588e-01 1.701774e+00 2.912163e-02
## 8 5.608558e-01 8.047525e-01 1.648032e-01
## 9 1.224623e+00 9.821009e-02 2.514313e-01
## 10 7.026904e-02 8.843460e-03 9.345465e-01
## 11 5.255191e-01 1.288046e-03 8.939072e-03
## 12 8.344559e-02 1.795261e+00 1.457274e-01
## 13 5.615045e-02 6.338825e-02 2.960497e+00
## 14 2.907474e+00 4.232572e-01 3.666943e-03
## 15 4.940869e-06 7.963536e-01 1.391914e+00
## 16 1.007773e+00 4.023687e-01 5.986341e-01
## 17 5.862447e-01 6.477822e-02 8.263452e-02
## 18 3.663405e-02 2.795476e-01 1.119890e-01
## 19 2.489708e-02 3.410604e+00 1.161005e-02
## 21 3.994092e+00 4.454793e-01 2.263466e-01
## 22 1.161775e+00 4.292078e-02 1.038206e-07
## 23 2.604954e-02 9.970833e-01 4.161852e-04
## 24 1.310359e-01 6.159921e+00 2.927733e+00
## 25 2.102572e-01 9.254911e-02 4.562979e+00
## 26 2.504739e+00 1.529211e-03 9.898346e-01
## 27 1.372263e-01 7.475284e-02 2.041540e-01
## 28 2.676662e+00 1.248225e-01 1.567080e+00
## 29 1.332439e+00 3.305975e-05 5.370497e-05
## 30 8.484017e-01 9.310549e-02 8.757526e-03
## 31 1.822876e-02 4.403881e-03 9.848238e-01
## 32 9.787773e-01 1.120313e-01 8.886462e-02
## 33 1.224252e+00 3.360076e+00 1.978302e+00
## 34 4.655591e-01 1.224431e-01 2.544458e-01
## 35 1.825757e+00 4.718023e-01 5.264313e-03
## 36 4.103025e-01 6.304219e-02 5.368740e-01
## 37 4.859451e-02 5.364217e-01 1.152632e-02
## 38 1.064469e+00 3.461188e-01 1.751898e-01
## 39 9.266581e-01 7.450076e-02 1.160615e+00
## 40 2.285833e+00 3.903170e+00 1.272554e+00
## 41 2.634988e-01 7.364287e-01 4.997378e+00
## 42 2.556723e-01 8.464318e-01 3.338658e-01
## 43 4.378698e-03 1.467142e+00 3.383291e-01
## 44 3.303895e+00 1.293610e-01 3.843345e-01
## 45 9.789288e-03 2.278935e-01 9.021070e+00
## 46 5.089196e-01 2.944344e+00 9.363817e-01
## 47 7.390881e-01 8.847220e-01 1.043489e-01
## 48 9.654197e-01 1.078499e-01 3.645852e-01
## 49 1.244521e+00 5.854987e-02 9.682806e-03
## 50 4.104962e+00 1.474163e+00 6.806580e-01
## 51 1.668795e+00 2.530318e-01 3.261740e-01
## 52 2.602487e-02 4.771294e-03 7.012794e-02
## 53 4.450427e+00 5.649394e-01 2.142924e-04
## 54 6.885035e-01 2.595428e+00 8.918063e-01
## 55 2.561844e+00 3.378095e+00 4.283720e-04
## 56 8.828774e-01 5.083110e-01 7.968070e-02
## 57 3.593146e+00 1.071202e+01 2.046028e+00
## 58 8.930084e-01 1.504878e-01 7.680242e-03
## 59 1.581563e+00 5.009476e+00 8.459416e-02
## 60 1.160091e-01 8.863118e-01 5.069670e-01
## 61 2.874761e-01 6.433228e-01 1.267342e+00
## 62 2.072612e+00 1.024078e+00 7.555115e-02
## 63 1.995609e-01 2.502486e+00 5.852473e-01
## 64 1.228949e-01 1.188562e+00 3.155310e+00
## 65 8.097255e-04 1.066283e-02 4.124686e+00
## 66 3.768009e-01 4.620895e-01 1.693973e-03
## 67 1.907285e+00 7.868343e+00 2.686599e-03
## 68 7.567517e-02 2.452416e+00 3.832473e+00
## 69 1.220089e+00 2.186526e-02 3.805314e-01
## 70 2.701326e-01 4.065596e-02 4.351450e+00
## 71 2.927258e-01 2.535797e-01 3.173359e-01
## 72 7.255164e-01 8.087583e-04 1.194516e+00
## 73 1.826813e-01 2.216761e-01 3.085910e+00
## 74 8.216438e-02 5.992081e-01 2.239944e+00
## 76 1.365831e-03 3.351056e+00 2.254605e+00
## 77 1.433405e-01 5.004284e-01 1.084542e+00
## 79 4.326601e+00 5.943420e-01 1.047592e+00
## 80 3.008387e+00 1.601343e-01 2.455426e-01
## 81 3.193022e-02 3.677315e-01 3.869233e-02
## 82 3.498546e+00 1.986998e-02 8.927555e-01
## 83 1.623654e+00 1.403146e+00 6.229100e-02
## 84 1.438216e-02 8.779848e-03 1.910475e+00
## 85 3.990406e+00 1.803605e+00 1.080070e-03
## 86 1.109913e+00 2.426138e-01 8.568193e-01
## 87 2.878710e-01 1.380280e+00 1.145829e-02
## 88 4.131714e+00 2.890158e+00 2.164877e-01
## 89 5.413000e-01 5.906687e-01 1.944074e-01
## 90 2.596908e+00 5.144412e+00 9.013141e+00
## 110 3.135864e-01 8.322345e-01 1.422597e+00
## 2A 5.265251e-01 5.787721e-01 1.889713e-01
## 2B 2.991764e-01 8.562440e-02 4.117091e-02
fviz_pca_var(res.propfor.pca,
col.var = "contrib",
select.var = list(contrib = 3),# Ici, que 3 var !
gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"))
fviz_pca_ind(res.propfor.pca,
col.ind = "contrib",
select.ind = list(contrib = 3),# Sélectionne le "top 3" selon la contribution
gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
repel = TRUE) # Avoid text overlapping (slow if many points)
Identification des variables les plus significatives par composante.
### fonction dimdesc() [in FactoMineR]
res.desc <- dimdesc(res.propfor.pca,
axes = c(1:3),
proba = 0.05)
Aide sur l’axe 1
### Description of dimension 1
res.desc$Dim.1
## $quanti
## correlation p.value
## log(ForColec) 0.8537348 1.136755e-26
## ForDom 0.7101109 4.610922e-15
## log(ForPriv) 0.5544429 1.430109e-08
##
## attr(,"class")
## [1] "condes" "list "
Aide sur l’axe 2
### Description of dimension 2
res.desc$Dim.2
## $quanti
## correlation p.value
## log(ForPriv) 0.7848278 5.540611e-20
## ForDom -0.5733769 3.493499e-09
##
## attr(,"class")
## [1] "condes" "list "
Aide sur l’axe 3
### Description of dimension 3
res.desc$Dim.3
## $quanti
## correlation p.value
## ForDom 0.4086337 6.375024e-05
## log(ForPriv) 0.2768363 8.255807e-03
## log(ForColec) -0.5196756 1.531420e-07
##
## attr(,"class")
## [1] "condes" "list "
Le package FactoInvestigate décrit et interprète automatiquement les résultats de votre analyse factorielle (ACP, AFC ou ACM) en choisissant les graphes les plus appropriés pour le rapport (sources : http://factominer.free.fr/reporting/index_fr.html, mais ce package semble inaccessible à la date de rédaction !)
## install.packages(FactoInvestigate)
## library(Investigate)
## Investigate(res.propfor.pca)