Analyse factorielles de correspondances binaires (AFC) avec R et FactoMineR sur des données brutes de températures maximales (Sources : www.meteociel.fr) Reconstitution de l’année 2010 (exemple de novembre) : http://www.meteociel.fr/climatologie/climato.php?mois=11&annee=2010
Pour aller plus loin :
Avec mes fichiers exemples, préférez les paramètres nord-américains (“.” séparateur de décimales, “,” séparateur de miliers).
Salle C210, identifiant => “geographie2” !
### setwd("D:/Users/geographie2/vgodard/ADD/temperMaxation/R")
### respecter ce cheminement si "geographie2"
### getwd()
# Remove all objects
rm(list = ls() )
temperMax <- read.csv("temperature_max.csv",
sep = ";",
dec =".",### Si param. régio. non US, remplacer le "." par une ","
stringsAsFactors = FALSE) # si stringsAsFactors = FALSE on perd les modalités si qualitative
Installer et exécuter préalablement la librairie “gplots”
### Avec la librairie gplots
## install.packages("gplots") ## si pas déjà installé !
library("gplots")
Quand la table de contingence ne contient pas trop de variables ou d’individus, il est possible de représenter les relations entre eux. Ici, ce n’est pas le cas.
# 1. Convertion des données en table
#dt <- as.table(as.matrix(temperMax))
# 2. Graphe
#balloonplot(t(dt), main ="temperMax", xlab ="", ylab="",
# label = FALSE, show.margins = FALSE)
Pour une petite table de contingence, il est possible de tester la significativité du lien de dépendance à l’aide d’un test du khi-deux.
# Calcul de la statistique du Chi-square (Khi-deux)
chisq <- chisq.test(temperMax[,2:13])
## Warning in chisq.test(temperMax[, 2:13]): Chi-squared approximation may be
## incorrect
chisq
##
## Pearson's Chi-squared test
##
## data: temperMax[, 2:13]
## X-squared = 278.62, df = 803, p-value = 1
# Calcul de la valeur du Khi-deux
chisq$statistic
## X-squared
## 278.6179
# Calcul du degrés de liberté (Degree of freedom)
df <- (nrow(temperMax[, 2:13]) - 1) * (ncol(temperMax[, 2:13]) - 1)
df
## [1] 803
# Calcul de la P-value
pval <- pchisq(chisq$statistic, df = df, lower.tail = FALSE)
pval
## X-squared
## 1
# ou
chisq$p.value
## [1] 1
Au risque 5% (communément admis), on rejette l’hypothèse nulle d’indépendance entre les lignes et les colonnes.
Sur les grosses tables, il est pratiquement toujours significatif (p-value < 0.05)
Installer et exécuter préalablement les librairies “FactoMineR”, “factoextra”, puis les charger
### Avec la librairie FactoMineR et factoextra
## install.packages(c("FactoMineR", "factoextra")) ## si pas déjà installés !
library("FactoMineR")
library("factoextra")
L’AFC avec tous les éléments actifs (73 lignes et 12 variables)
- CA est le nom de l’AFC dans Factominer
- CA fonctionne a minima avec :
x : le data frame (la table de contingence) ;
ncp : nb de dimensions gardé dans le résultat final ;
graph : le graphe par défaut (pour ne pas afficher le graphe graph = FALSE) ;
- Si le nom des stations est en première colonne :
le tableau “utile” va de la deuxième colonne à la 17ème [,2:17] ;
les variables quantitatives supplémentaires sont ici les coordonnées en latitude et longitude des stations (en colonnes 13 et 14 => col.sup = 13:14) ;
les variables qualitatives (supplémentaires) sont les dernières (quali.sup=c(15:16)) et sont à raccourcir pour rendre lisible les graphiques et tableaux.
res.temperMax.ca <- CA(temperMax[,2:17],
col.sup = 13:14,
row.sup = NULL,
quali.sup=c(15:16),
axes = 1:2,
ncp = 12,
graph = TRUE)
Le graphique avec la fonction Biplot (cf. infra) apporte un net gain de lisibilité.
Si ce n’est déjà fait, installer le package “factoextra”, puis le charger.
## install.packages("factoextra")
library("factoextra")
Si on veut connaître tous les résultats de la fonction CA dans Factominer et/ou factoextra :
### Listage des résultats
print(res.temperMax.ca)
## **Results of the Correspondence Analysis (CA)**
## The row variable has 74 categories; the column variable has 12 categories
## The chi square of independence between the two variables is equal to 278.6179 (p-value = 1 ).
## *The results are available in the following objects:
##
## name description
## 1 "$eig" "eigenvalues"
## 2 "$col" "results for the columns"
## 3 "$col$coord" "coord. for the columns"
## 4 "$col$cos2" "cos2 for the columns"
## 5 "$col$contrib" "contributions of the columns"
## 6 "$row" "results for the rows"
## 7 "$row$coord" "coord. for the rows"
## 8 "$row$cos2" "cos2 for the rows"
## 9 "$row$contrib" "contributions of the rows"
## 10 "$col.sup$coord" "coord. for supplementary columns"
## 11 "$col.sup$cos2" "cos2 for supplementary columns"
## 12 "$quali.sup$coord" "coord. for supplementary categorical var."
## 13 "$quali.sup$cos2" "cos2 for supplementary categorical var."
## 14 "$call" "summary called parameters"
## 15 "$call$marge.col" "weights of the columns"
## 16 "$call$marge.row" "weights of the rows"
La somme des eigenvalues égale le nombre d’axes (ici 12).
Contrairement à l’ACP eigenvalue n’est jamais supérieure à 1.
eig.val <- get_eigenvalue(res.temperMax.ca)
eig.val
## eigenvalue variance.percent cumulative.variance.percent
## Dim.1 1.783547e-02 91.70786911 91.70787
## Dim.2 9.211452e-04 4.73641827 96.44429
## Dim.3 2.423211e-04 1.24598614 97.69027
## Dim.4 1.301831e-04 0.66938583 98.35966
## Dim.5 1.035333e-04 0.53235571 98.89202
## Dim.6 7.697635e-05 0.39580316 99.28782
## Dim.7 5.142354e-05 0.26441367 99.55223
## Dim.8 3.854812e-05 0.19820983 99.75044
## Dim.9 2.136465e-05 0.10985446 99.86030
## Dim.10 1.706588e-05 0.08775070 99.94805
## Dim.11 1.010392e-05 0.05195312 100.00000
Il est aussi possible d’apprécier les ruptures dans la succession des eigenvalues.
# Visualisation des eigenvalues
fviz_eig(res.temperMax.ca, addlabels = TRUE, ylim = c(0, 40)) # calibrer le ylim avec la lecture du tableau précédent
Il n’y a pas de règles pour choisir le nombre d’axes. Eventuellement, retenir les axes qui ont une eigenvalues d’une valeur supérieure à :
1/(nrow(temperMax)-1 = 1/72 soit environ 1.4%) ou
1/(ncol(temperMax[, 2:13])-1 = 1/12 soit environ 8.3%) Sources : http://www.sthda.com/english/articles/31-principal-component-methods-in-r-practical-guide/113-ca-correspondence-analysis-in-r-essentials/#r-code-to-compute-ca (According to M. T. Bendixen 1995)
# Visualisation des eigenvalues
sp <- fviz_eig(res.temperMax.ca,addlabels = TRUE, ylim = c(0, 40)) # calibrer le ylim avec la lecture du tableau précédent
sp + geom_hline (yintercept = 8.3, linetype = 2, color = "red") # tracer le yintercept avec la valeur de la *eigenvalues* moyenne
Les paramètres les plus utiles :
get_ca_row(res.temperMax.ca)
## Correspondence Analysis - Results for rows
## ===================================================
## Name Description
## 1 "$coord" "Coordinates for the rows"
## 2 "$cos2" "Cos2 for the rows"
## 3 "$contrib" "contributions of the rows"
## 4 "$inertia" "Inertia of the rows"
Interprétation des coordonnées des variables sur les axes factoriels (les colonnes : col).
res.temperMax.ca$col$coord ### [toutes les lignes ; colonnes 1 à 12, cf résultats *eigenvalue*]
## Dim 1 Dim 2 Dim 3 Dim 4 Dim 5
## Tmax_janv 4.676522e-01 0.059139375 -0.020730147 -0.028961251 0.0221056454
## Tmax_fevr 1.734267e-01 0.044808905 -0.011591979 0.025787076 0.0059646214
## Tmax_mars -8.440914e-05 0.038579648 0.023919566 0.010815256 0.0120764873
## Tmax_avri -6.240442e-02 -0.007189021 0.026421023 0.008954528 0.0039739861
## Tmax_mai -3.408238e-02 0.011484187 -0.002196634 0.006235600 0.0030450627
## Tmax_juin -8.508948e-02 0.010269865 -0.007960547 0.002246295 -0.0073779203
## Tmax_juil -8.928686e-02 -0.016485094 -0.019045246 -0.001431463 0.0015409013
## Tmax_aou -5.271022e-02 -0.034207237 -0.008489538 -0.001714790 0.0107809524
## Tmax_sept -2.697403e-02 -0.003618042 0.011469657 -0.016040154 -0.0002682142
## Tmax_octo 1.143947e-03 0.020837565 0.014237049 -0.015093683 -0.0148868677
## Tmax_nove 1.018774e-01 0.018288574 -0.016059550 0.010325735 -0.0236322259
## Tmax_dece 4.620334e-01 -0.106322745 0.016916133 0.009634358 -0.0098971399
## Dim 6 Dim 7 Dim 8 Dim 9 Dim 10
## Tmax_janv -0.012012697 0.0007619958 0.0103038547 3.986100e-03 0.0004727101
## Tmax_fevr 0.008014642 -0.0136208580 -0.0156477062 2.101983e-03 0.0019475555
## Tmax_mars 0.010489763 0.0151185383 0.0006166102 4.243781e-05 0.0012554547
## Tmax_avri -0.006406254 -0.0059737091 0.0082813377 5.895982e-03 -0.0008212265
## Tmax_mai -0.011474636 0.0024921314 -0.0008011784 -9.952083e-03 -0.0062996481
## Tmax_juin -0.013809089 -0.0024552454 -0.0010628513 1.975791e-03 0.0042446984
## Tmax_juil 0.002401785 0.0076542614 -0.0026462253 5.694728e-03 -0.0033124953
## Tmax_aou 0.006318660 -0.0030366921 0.0032492658 -4.638169e-03 0.0056184874
## Tmax_sept 0.007004874 -0.0095207665 -0.0036504621 5.021817e-05 -0.0049909537
## Tmax_octo 0.001375418 0.0058469537 -0.0050737468 -1.912136e-03 0.0049103500
## Tmax_nove 0.013752011 -0.0020407839 0.0139422249 -1.644049e-03 -0.0022081202
## Tmax_dece -0.006902081 0.0067381313 -0.0059945844 2.353148e-04 -0.0005589627
## Dim 11
## Tmax_janv 0.0007795822
## Tmax_fevr 0.0030648641
## Tmax_mars -0.0051246215
## Tmax_avri 0.0038825180
## Tmax_mai 0.0015980732
## Tmax_juin -0.0046011938
## Tmax_juil 0.0015650796
## Tmax_aou 0.0005303625
## Tmax_sept -0.0032592796
## Tmax_octo 0.0048706914
## Tmax_nove -0.0007632761
## Tmax_dece -0.0024360867
Valeur des coordonnées des variables quantitatives supplémentaires (les cols.).
res.temperMax.ca$col.sup$coord ## coord. for the supplementary columns
## Dim 1 Dim 2 Dim 3 Dim 4 Dim 5 Dim 6
## lat -0.1386426 0.05986123 0.04131603 -0.04911599 -0.05930403 -0.001905762
## long -0.2452963 -0.33568280 -0.76341496 0.32838082 0.04398546 0.121025028
## Dim 7 Dim 8 Dim 9 Dim 10 Dim 11
## lat -0.01034257 -0.01945372 0.01001001 0.01111334 0.0004328574
## long 0.39203709 0.04476180 0.10074090 -0.07467782 -0.0033595854
Interprétation du degré d’association entre les colonnes et un axe particulier des variables quantitatives supplémentaires.
res.temperMax.ca$col.sup$cos2 ## "cos2 for supplementary columns"
## Dim 1 Dim 2 Dim 3 Dim 4 Dim 5 Dim 6
## lat 0.55942746 0.10428973 0.04968068 0.07020953 0.102357262 0.0001057031
## long 0.04516227 0.08457691 0.43743646 0.08093739 0.001452151 0.0109937037
## Dim 7 Dim 8 Dim 9 Dim 10 Dim 11
## lat 0.003113198 0.011014263 0.002916216 0.003594508 5.453055e-06
## long 0.115358067 0.001503865 0.007617375 0.004185784 8.471592e-06
Interprétation des coordonnées des individus sur les axes factoriels
res.temperMax.ca$row$coord ### [ligne 1 à 74 ; colonnes 1 à 12, mais 11 dimensions !]
## Dim 1 Dim 2 Dim 3 Dim 4 Dim 5
## 1 -0.12678445 0.036893509 0.0019013097 -0.0112881921 -0.0105914701
## 2 0.22608358 0.012116271 -0.0078538075 -0.0027101718 -0.0083416997
## 3 -0.10698456 0.023224955 0.0009257370 -0.0135099463 -0.0036022941
## 4 0.22531956 -0.003191371 -0.0271183373 0.0025473721 -0.0043242049
## 5 -0.10071221 -0.035343697 0.0017767226 0.0257617283 -0.0108046368
## 6 0.07316297 -0.014183765 0.0156263575 -0.0041103954 0.0094560690
## 7 -0.07163595 -0.067174065 0.0246928521 -0.0143737732 0.0042116126
## 8 -0.14419260 0.019583128 0.0013727988 0.0086184973 0.0087055285
## 9 0.20787756 -0.005084419 -0.0249802233 0.0035225651 -0.0089361810
## 10 -0.15543413 0.035564192 -0.0108846618 -0.0094923297 0.0074884248
## 11 0.03607073 -0.006328428 0.0260611516 0.0085350796 0.0096236048
## 12 0.19460620 0.015783306 0.0334146931 -0.0042783336 0.0090858147
## 13 0.14263297 0.016218903 0.0289572408 0.0075371273 -0.0022675114
## 14 -0.09123300 0.007260725 0.0160801920 0.0103398205 0.0053093591
## 15 -0.13539383 -0.002077821 0.0065585646 -0.0128632900 -0.0021283435
## 16 0.11580066 0.039470123 0.0158228731 -0.0121975633 -0.0180955952
## 17 -0.02652327 0.039521328 -0.0125754429 -0.0153893622 0.0019185662
## 18 0.19356081 0.001532943 -0.0167615742 0.0139233440 0.0048095048
## 19 0.16502722 0.018593790 -0.0101068790 0.0012837133 0.0040705285
## 20 0.05991629 -0.035071718 -0.0123206319 -0.0007989140 0.0044003454
## 21 0.03032628 -0.017001894 -0.0129755406 0.0146998379 0.0087439286
## 22 -0.20885005 0.023390223 -0.0017845088 0.0044258282 -0.0119167552
## 23 0.03797975 0.032655630 -0.0057543268 -0.0113778047 -0.0079673303
## 24 -0.04264444 -0.018476764 0.0085470991 0.0077033737 -0.0066854494
## 25 0.05861696 0.041284999 0.0094860734 -0.0074534406 -0.0090571311
## 26 -0.13017797 -0.028319194 -0.0190490776 -0.0348051269 0.0002846803
## 27 0.19755143 -0.003204908 -0.0215415753 0.0016830147 0.0008364231
## 28 0.01200446 -0.031942187 0.0302968409 0.0137028438 0.0130784241
## 29 -0.13077958 -0.031422714 -0.0126367087 0.0040885083 -0.0080369561
## 30 0.17713233 0.006785105 -0.0150955134 0.0001343279 0.0076503730
## 31 0.10775830 0.041972202 0.0148983744 -0.0159144489 -0.0141538963
## 32 -0.25032796 -0.027643211 -0.0108538252 -0.0055406632 -0.0116955917
## 33 0.11569554 0.046950029 0.0063046177 -0.0170049515 -0.0123097502
## 34 0.16740483 -0.009807503 0.0290929701 0.0084955406 -0.0278099861
## 35 -0.05570839 0.026564124 0.0004959769 -0.0054131172 0.0065144767
## 36 -0.12441388 0.037784244 -0.0014519909 0.0049994084 0.0109110433
## 37 -0.01997211 0.031322585 0.0048400469 -0.0222074071 -0.0205655179
## 38 0.08791185 -0.001348438 -0.0177395462 -0.0013011323 0.0222544818
## 39 -0.06097907 0.023423817 0.0075083129 0.0040568451 0.0125924618
## 40 -0.16693216 -0.101037066 -0.0074880897 -0.0241850245 -0.0189399876
## 41 -0.17163006 0.039114918 -0.0046719030 -0.0101407206 0.0008107987
## 42 -0.08099393 -0.029073972 0.0232473973 -0.0154935331 -0.0007531510
## 43 -0.09518898 -0.037315019 0.0025524868 0.0233134143 -0.0197076240
## 44 -0.11069222 -0.022216007 0.0081762434 0.0157963399 -0.0048091858
## 45 0.08751127 -0.009132830 -0.0118578118 0.0043207428 -0.0006833211
## 46 -0.25790542 0.016120389 -0.0217594778 0.0068302118 -0.0008179284
## 47 -0.09821000 -0.091146498 -0.0036669551 -0.0251802789 0.0157892923
## 48 0.05038759 0.001902285 0.0164740466 0.0004294256 0.0171988498
## 49 -0.21205882 0.019394101 -0.0213651964 0.0103898587 -0.0015616720
## 50 -0.25708970 0.011721177 -0.0159476809 0.0053901204 -0.0070554055
## 51 0.01504216 0.032940023 -0.0012500395 -0.0048949892 0.0054717411
## 52 -0.08959879 0.006419716 0.0175610731 0.0133010579 0.0062755728
## 53 0.18344690 0.011571630 -0.0171546582 -0.0030149000 -0.0079113512
## 54 0.05742910 -0.022428567 -0.0195999740 0.0099993621 0.0030003543
## 55 0.04814806 -0.027030153 -0.0210009889 0.0104788469 -0.0049097303
## 56 -0.12543517 0.035291028 0.0012175010 0.0108001490 0.0077793083
## 57 0.12704005 -0.003032058 0.0246120979 0.0046642329 0.0090905767
## 58 0.13907450 -0.015293585 -0.0136008603 -0.0057708837 -0.0021082021
## 59 -0.06850883 0.019078997 0.0068309756 -0.0061037875 0.0107565779
## 60 0.09467416 0.036890465 0.0141036217 0.0017254397 -0.0158877771
## 61 -0.05141593 -0.074812741 0.0111424746 -0.0124683091 0.0135507108
## 62 -0.14282022 0.035635168 0.0002401270 0.0020112120 0.0061668610
## 63 -0.03630113 -0.028530568 -0.0105974232 -0.0053486600 -0.0026482893
## 64 -0.06836292 -0.044490756 0.0023810756 0.0062969270 -0.0162197890
## 65 0.10218650 -0.026450000 0.0289939982 -0.0012832369 -0.0125655112
## 66 -0.20736297 0.035067536 -0.0067201641 -0.0054839182 -0.0017825492
## 67 -0.21858936 0.018558322 -0.0020405916 0.0267066786 -0.0140199101
## 68 0.11835187 -0.008471922 0.0171381906 -0.0075890508 0.0006164601
## 69 0.13910658 -0.005697191 -0.0130473521 0.0009644687 0.0105901393
## 70 0.06761672 -0.028088868 0.0030966122 -0.0031198067 0.0044050723
## 71 -0.08010955 0.019394688 -0.0019760418 -0.0027588207 0.0142043981
## 72 -0.14614968 0.034960495 0.0091686873 -0.0072500053 0.0096512269
## 73 -0.15167022 0.027407914 -0.0075379539 0.0050555330 0.0105879021
## 74 -0.06183567 -0.007692716 0.0123485427 0.0207456328 -0.0014951172
## Dim 6 Dim 7 Dim 8 Dim 9 Dim 10
## 1 7.712087e-03 0.0005893867 2.501359e-03 -5.076129e-04 3.730535e-03
## 2 5.132218e-03 0.0123849633 -6.046837e-03 6.397855e-03 3.109253e-04
## 3 2.598164e-03 -0.0056912054 -1.414568e-02 4.089916e-05 -7.775884e-03
## 4 7.379889e-03 -0.0022015911 -5.429487e-03 5.051901e-03 2.975294e-03
## 5 7.606841e-04 0.0026593567 -2.325575e-03 -2.559932e-04 -8.923743e-03
## 6 -6.926947e-04 -0.0033801611 5.911969e-03 3.610102e-03 -1.848851e-03
## 7 -7.736227e-03 0.0072800646 -1.274670e-02 5.084349e-03 -1.083240e-04
## 8 9.734000e-03 0.0046887323 -4.121253e-03 9.921805e-04 3.091551e-03
## 9 4.574076e-03 -0.0037452655 -3.834707e-03 2.044104e-04 -1.167760e-03
## 10 1.823684e-03 0.0038648277 3.372056e-03 1.796138e-03 4.572545e-03
## 11 1.229221e-03 0.0021535375 -9.411846e-04 -1.196443e-03 -1.070562e-03
## 12 1.536902e-02 0.0041551296 1.178193e-02 -2.073754e-03 9.569149e-04
## 13 5.522114e-03 0.0035424050 8.727955e-03 -7.260960e-03 -8.810982e-03
## 14 3.515490e-03 0.0044145466 -4.292312e-03 -1.117164e-03 3.722278e-03
## 15 -9.223830e-03 0.0072394614 5.484378e-03 2.798288e-03 -1.112812e-02
## 16 -1.527342e-02 -0.0081112299 -2.130402e-03 -1.433011e-03 1.569867e-03
## 17 1.662259e-02 -0.0006184510 -3.874742e-03 6.921625e-03 -3.449915e-03
## 18 -1.945165e-03 -0.0024226369 -1.565864e-02 -6.387004e-03 5.738782e-03
## 19 2.174645e-03 0.0070583995 3.024011e-03 -2.617097e-03 -7.905219e-03
## 20 -7.149919e-04 -0.0185941880 1.054436e-02 5.024476e-04 1.129388e-03
## 21 -2.767247e-03 -0.0018595429 -5.132468e-04 3.010163e-04 4.268996e-03
## 22 -1.086504e-02 0.0122700264 4.615286e-03 -5.780550e-03 -3.211229e-03
## 23 1.213514e-02 0.0011770319 -3.713849e-03 -1.785756e-04 2.904622e-03
## 24 1.886417e-02 0.0028641221 6.555909e-03 6.040571e-03 7.135359e-04
## 25 1.364479e-02 -0.0075477069 -3.057668e-03 -3.622746e-03 -1.982548e-03
## 26 -7.659433e-03 0.0074371771 1.098299e-02 -1.194751e-02 2.160551e-03
## 27 -1.258400e-03 0.0075384871 -2.652325e-03 1.846682e-03 -4.531330e-03
## 28 -1.236925e-03 -0.0001127758 -5.866519e-03 -9.081995e-04 1.744244e-03
## 29 1.297215e-02 -0.0098560080 3.493419e-04 -1.827930e-03 -3.971322e-03
## 30 -4.015520e-03 0.0082949223 3.527403e-04 -3.439390e-03 -2.166143e-03
## 31 -7.186328e-03 -0.0041208712 -4.640794e-04 -2.783965e-03 -1.329843e-03
## 32 -1.417119e-02 0.0124391033 -3.493542e-03 3.878316e-03 7.550145e-03
## 33 1.265205e-02 -0.0131271664 -7.564235e-04 3.683370e-03 3.853748e-03
## 34 -3.024954e-02 0.0070538118 -6.423264e-03 -3.587163e-03 1.776774e-03
## 35 -5.183268e-03 -0.0078242439 -7.306059e-03 9.898603e-03 -2.255733e-03
## 36 -1.836062e-03 0.0007907176 -4.440977e-04 -1.877265e-03 3.975723e-03
## 37 8.313105e-03 0.0004204195 -5.638244e-03 -5.568176e-03 -4.695370e-03
## 38 -6.815904e-03 0.0041354183 5.384019e-03 -5.436468e-03 -2.037019e-03
## 39 -3.540232e-03 -0.0064653657 -8.275811e-03 4.002314e-04 -7.413911e-03
## 40 1.397188e-02 -0.0065169873 3.641521e-03 -3.994261e-03 -3.483317e-05
## 41 -3.645386e-03 0.0145639426 1.118030e-02 5.813762e-03 -1.375390e-03
## 42 1.113601e-03 0.0016289514 -1.198088e-02 4.788098e-03 -1.385699e-03
## 43 5.747819e-03 -0.0037361731 -6.141644e-03 -2.274174e-03 -4.224158e-03
## 44 -1.400553e-03 0.0011452026 3.365855e-03 -3.174352e-03 -3.491870e-03
## 45 -3.894307e-03 0.0099422055 -5.834697e-03 -1.612136e-03 3.478738e-03
## 46 -6.049409e-03 -0.0007614409 -3.229899e-04 7.287470e-03 4.327402e-03
## 47 -6.537334e-03 -0.0070253517 4.735496e-04 1.529730e-03 -2.614638e-03
## 48 -4.675556e-03 -0.0059188988 4.978073e-03 1.890145e-03 5.734929e-05
## 49 -6.565579e-03 -0.0024651121 2.906401e-03 7.056817e-03 1.764148e-03
## 50 -9.877575e-03 0.0064284468 1.276618e-04 6.276036e-03 9.271458e-04
## 51 -1.339422e-02 -0.0176552478 -1.215875e-03 5.083854e-03 -5.581423e-03
## 52 5.455612e-03 0.0057632418 1.425469e-03 -9.934268e-04 2.505034e-03
## 53 1.007618e-02 0.0070648582 3.067823e-03 8.297489e-03 3.016789e-05
## 54 -6.369015e-05 -0.0092470625 2.878429e-03 -4.616584e-03 2.596344e-03
## 55 -1.395020e-03 -0.0102169598 3.032678e-05 -6.193522e-03 8.431076e-05
## 56 -3.132911e-03 -0.0028447094 -3.678135e-03 -1.596590e-03 -9.145012e-04
## 57 6.428115e-04 -0.0003975444 3.954062e-03 1.706299e-03 6.565043e-03
## 58 -1.089042e-02 -0.0016593570 1.288455e-02 4.291591e-03 5.456123e-03
## 59 8.351313e-03 -0.0073778438 -3.330011e-03 -7.956074e-03 3.364940e-03
## 60 -2.845349e-02 -0.0096435159 4.000607e-03 -2.279758e-03 4.669933e-03
## 61 -5.411372e-04 0.0029390556 -1.098469e-02 5.677939e-03 -2.770980e-04
## 62 1.558504e-03 -0.0019007842 -1.325668e-03 -5.910223e-03 3.812063e-03
## 63 8.556322e-03 0.0072732622 -1.940709e-04 -1.065278e-02 1.452570e-03
## 64 8.104206e-03 -0.0022349892 4.564203e-03 -2.935251e-04 1.575122e-03
## 65 2.264836e-03 0.0048839186 -5.638022e-05 2.510100e-03 6.032737e-03
## 66 2.329588e-03 0.0051640102 -7.824931e-04 -9.978609e-03 4.150626e-03
## 67 -1.395234e-03 -0.0105063641 1.402127e-02 5.872687e-03 -4.389138e-03
## 68 1.695739e-03 0.0026125514 9.007654e-03 5.380520e-03 5.952831e-03
## 69 -8.915525e-03 0.0093386661 3.945789e-03 1.821877e-03 -8.665186e-03
## 70 -6.270565e-03 -0.0116750044 1.783974e-03 1.530521e-03 4.607242e-04
## 71 2.404808e-03 -0.0016494522 -4.652304e-03 -3.381176e-03 -7.867110e-04
## 72 9.695883e-04 -0.0096453077 -2.546350e-03 -1.471751e-03 2.038413e-04
## 73 5.107958e-04 0.0067727417 -3.023221e-03 4.357813e-04 4.150763e-03
## 74 1.390106e-02 0.0050460848 6.178636e-03 2.897240e-03 2.018426e-03
## Dim 11
## 1 -4.691762e-03
## 2 -6.936927e-04
## 3 -1.490110e-03
## 4 -3.096680e-03
## 5 1.884152e-03
## 6 -2.375553e-03
## 7 -1.371146e-03
## 8 2.776853e-03
## 9 -2.868567e-03
## 10 -3.458063e-03
## 11 -1.567051e-04
## 12 -4.918295e-04
## 13 1.046987e-03
## 14 4.592823e-04
## 15 5.007942e-04
## 16 3.934734e-03
## 17 9.197979e-04
## 18 2.055622e-03
## 19 8.445157e-03
## 20 3.391807e-04
## 21 6.065608e-04
## 22 4.558067e-04
## 23 -3.855962e-03
## 24 3.749629e-03
## 25 -4.647617e-04
## 26 3.556525e-03
## 27 -4.993562e-03
## 28 -2.712605e-03
## 29 8.241391e-04
## 30 8.700611e-04
## 31 4.326974e-03
## 32 6.584063e-03
## 33 5.295310e-03
## 34 -4.805064e-03
## 35 -2.105623e-03
## 36 -2.313482e-03
## 37 -4.802925e-03
## 38 -3.659216e-03
## 39 3.524417e-04
## 40 -4.290485e-03
## 41 -4.427189e-03
## 42 1.379444e-03
## 43 3.167553e-03
## 44 4.457306e-03
## 45 3.854518e-04
## 46 5.591919e-05
## 47 5.340268e-03
## 48 -3.071325e-04
## 49 2.223291e-03
## 50 -1.537678e-03
## 51 -1.817802e-03
## 52 2.710817e-03
## 53 6.941893e-03
## 54 1.060832e-03
## 55 -8.206942e-04
## 56 -3.455967e-03
## 57 -2.109475e-03
## 58 -7.651239e-04
## 59 4.924540e-03
## 60 2.579312e-03
## 61 -1.034574e-03
## 62 4.492037e-04
## 63 -7.508471e-03
## 64 7.872872e-04
## 65 -7.686437e-04
## 66 -1.138952e-03
## 67 -5.513158e-03
## 68 -3.618513e-04
## 69 1.805205e-06
## 70 2.617348e-05
## 71 3.292389e-05
## 72 -2.294343e-03
## 73 6.188363e-03
## 74 -2.425415e-03
Interprétation des contributions des variables sur les axes factoriels.
res.temperMax.ca$col$contrib ### [toutes les lignes ; colonnes toutes, cf résultats *eigenvalue*] pour rechercher les plus contributives dans un tableur.
## Dim 1 Dim 2 Dim 3 Dim 4 Dim 5 Dim 6
## Tmax_janv 3.458750e+01 10.7098450 5.0023184 18.1734720 13.313255390 5.2878798
## Tmax_fevr 7.323963e+00 9.4667202 2.4083681 22.1844476 1.492398411 3.6241817
## Tmax_mars 2.518809e-06 10.1880114 14.8873129 5.6652626 8.881826469 9.0131174
## Tmax_avri 1.969144e+00 0.5059911 25.9800200 5.5547216 1.375638138 4.8081991
## Tmax_mai 6.099119e-01 1.3408014 0.1864731 2.7970100 0.838695915 16.0181575
## Tmax_juin 4.888499e+00 1.3788270 3.1492198 0.4667534 6.331350895 29.8319183
## Tmax_juil 6.316199e+00 4.1688862 21.1517949 0.2224184 0.324067146 1.0589521
## Tmax_aou 2.016512e+00 16.4438573 3.8501055 0.2923904 14.532157924 6.7141102
## Tmax_sept 4.619059e-01 0.1609036 6.1469011 22.3773733 0.007867379 7.2175531
## Tmax_octo 6.387002e-04 4.1033266 7.2814678 15.2337270 18.633607771 0.2139354
## Tmax_nove 3.369024e+00 2.1021544 6.1618126 4.7415508 31.229303786 14.2235540
## Tmax_dece 3.845670e+01 39.4306756 3.7942057 2.2908728 3.039830777 1.9884414
## Dim 7 Dim 8 Dim 9 Dim 10 Dim 11
## Tmax_janv 0.03184938 7.76880193 2.097773e+00 0.03693337 0.1696649
## Tmax_fevr 15.66916894 27.58653250 8.981765e-01 0.96527273 4.0376785
## Tmax_mars 28.02584042 0.06218979 5.315096e-04 0.58233706 16.3883369
## Tmax_avri 6.25831867 16.04461298 1.467398e+01 0.35639270 13.4545365
## Tmax_mai 1.13102434 0.15593631 4.341345e+01 21.77689624 2.3669857
## Tmax_juin 1.41168003 0.35289880 2.200366e+00 12.71374443 25.2324705
## Tmax_juil 16.09940911 2.56693992 2.144942e+01 9.08546650 3.4256931
## Tmax_aou 2.32132194 3.54538222 1.303446e+01 23.94451348 0.3603726
## Tmax_sept 19.95852682 3.91416443 1.336511e-03 16.52665856 11.9041976
## Tmax_octo 5.78718834 5.81332504 1.489745e+00 12.29890745 20.4391010
## Tmax_nove 0.46888365 29.19402262 7.324314e-01 1.65405451 0.3338156
## Tmax_dece 2.83678836 2.99519346 8.327466e-03 0.05882297 1.8871471
Interprétation des contributions des individus sur les axes factoriels.
res.temperMax.ca$row$contrib ### [ligne toutes ; colonnes toutes] pour rechercher les plus contributifs dans un tableur.
## Dim 1 Dim 2 Dim 3 Dim 4 Dim 5 Dim 6
## 1 1.00151934 1.642040525 0.016577786 1.087693e+00 1.204050122 8.586152e-01
## 2 4.83502836 0.268878123 0.429452243 9.518855e-02 1.133900023 5.772960e-01
## 3 0.78569882 0.716935771 0.004329946 1.716529e+00 0.153453547 1.073679e-01
## 4 4.68914998 0.018214090 4.999376424 8.211286e-02 0.297518203 1.165530e+00
## 5 0.75938768 1.810838869 0.017395300 6.807370e+00 1.505651043 1.003772e-02
## 6 0.45103576 0.328222198 1.514388352 1.950409e-01 1.297939065 9.367841e-03
## 7 0.34162581 5.816322107 2.987614387 1.884344e+00 0.203418364 9.231545e-01
## 8 1.46874869 0.524544361 0.009798705 7.188772e-01 0.922266653 1.550856e+00
## 9 4.06907025 0.047132352 4.324799434 1.600767e-01 1.295354239 4.564720e-01
## 10 1.60551659 1.627438046 0.579489112 8.203472e-01 0.641959517 5.120926e-02
## 11 0.10922487 0.065096844 4.196548225 8.378318e-01 1.339343175 2.938997e-02
## 12 3.09921486 0.394721599 6.725223207 2.052191e-01 1.163779755 4.478763e+00
## 13 1.67202764 0.418603782 5.072375173 6.396544e-01 0.072795959 5.806864e-01
## 14 0.60720339 0.074464072 1.388372769 1.068529e+00 0.354257549 2.088956e-01
## 15 1.30573025 0.005954271 0.225510472 1.614693e+00 0.055583239 1.404125e+00
## 16 0.89900840 2.022251704 1.235394808 1.366526e+00 3.781743954 3.623611e+00
## 17 0.04685956 2.014482445 0.775325110 2.161301e+00 0.042237885 4.264504e+00
## 18 3.59093846 0.004360954 1.981965603 2.545601e+00 0.381925383 8.402590e-02
## 19 2.49621739 0.613569285 0.689126164 2.069366e-02 0.261623948 1.004328e-01
## 20 0.30642897 2.032874758 0.953672695 7.463974e-03 0.284720159 1.011043e-02
## 21 0.08541228 0.519796381 1.150870287 2.749396e+00 1.223206998 1.647802e-01
## 22 2.84228557 0.690277672 0.015273176 1.748710e-01 1.594113679 1.782332e+00
## 23 0.08727665 1.249299341 0.147460687 1.073102e+00 0.661643648 2.064481e+00
## 24 0.13266462 0.482212671 0.392248335 5.930923e-01 0.561689275 6.014962e+00
## 25 0.23371184 2.244787375 0.450505871 5.176995e-01 0.961214003 2.934235e+00
## 26 1.24420553 1.140080457 1.960913585 1.218523e+01 0.001025030 9.980165e-01
## 27 3.83217491 0.019528670 3.353770177 3.810578e-02 0.011834277 3.602881e-02
## 28 0.01147150 1.572610362 5.378031722 2.047796e+00 2.345582927 2.821949e-02
## 29 1.21356210 1.356519574 0.833956640 1.624957e-01 0.789532503 2.766515e+00
## 30 2.88690589 0.082017533 1.543213896 2.274572e-04 0.927698516 3.437541e-01
## 31 0.76347545 2.242712896 1.074149589 2.281429e+00 2.269082643 7.867468e-01
## 32 3.72284389 0.879001548 0.515127978 2.498674e-01 1.399926316 2.764369e+00
## 33 0.87275543 2.782835920 0.190752496 2.583094e+00 1.702011501 2.418289e+00
## 34 1.92594915 0.127991831 4.281326501 6.795493e-01 9.156195754 1.457048e+01
## 35 0.22360386 0.984431883 0.001304531 2.892431e-01 0.526746765 4.485107e-01
## 36 1.08860435 1.944063432 0.010913237 2.408240e-01 1.442346631 5.493314e-02
## 37 0.02455619 1.169458433 0.106146478 4.159478e+00 4.485357221 9.857503e-01
## 38 0.74649056 0.003400539 2.237215833 2.240281e-02 8.240795591 1.039690e+00
## 39 0.27999548 0.799947104 0.312440632 1.697838e-01 2.056910361 2.186655e-01
## 40 1.67733848 11.897581008 0.248414036 4.823517e+00 3.719672708 2.722560e+00
## 41 1.89988909 1.910657895 0.103614985 9.086764e-01 0.007304194 1.985893e-01
## 42 0.43439984 1.083802066 2.634066593 2.177789e+00 0.006470734 1.902704e-02
## 43 0.67093246 1.996316231 0.035507972 5.513753e+00 4.954258716 5.668119e-01
## 44 0.89432902 0.697512039 0.359140326 2.495205e+00 0.290811085 3.317339e-02
## 45 0.70133923 0.147899769 0.947769404 2.342325e-01 0.007366388 3.218013e-01
## 46 4.23278117 0.320193442 2.217661197 4.067273e-01 0.007333988 5.395828e-01
## 47 0.65455300 10.916161456 0.067164225 5.895010e+00 2.914495827 6.719890e-01
## 48 0.21542234 0.005944995 1.694874611 2.143629e-03 4.323615835 4.297714e-01
## 49 2.97781259 0.482259220 2.224804514 9.793413e-01 0.027820761 6.613907e-01
## 50 4.09481802 0.164802665 1.159721501 2.465995e-01 0.531268276 1.400533e+00
## 51 0.01731216 1.607442455 0.008799783 2.511682e-01 0.394627052 3.180485e+00
## 52 0.58187492 0.057838032 1.645207964 1.756822e+00 0.491741356 4.998499e-01
## 53 2.94757708 0.227085846 1.897151169 1.090738e-01 0.944387908 2.060457e+00
## 54 0.30242710 0.893133161 2.592752110 1.256120e+00 0.142202222 8.618438e-05
## 55 0.20431975 1.246827207 2.861050959 1.325897e+00 0.365992916 3.974117e-02
## 56 1.10408694 1.692192591 0.007655907 1.121384e+00 0.731562224 1.595836e-01
## 57 1.33906447 0.014769023 3.699225832 2.472924e-01 1.181157321 7.943554e-03
## 58 1.77661125 0.415980093 1.250614813 4.190947e-01 0.070327726 2.524141e+00
## 59 0.34826979 0.522986272 0.254848173 3.787491e-01 1.479025282 1.199111e+00
## 60 0.62651105 1.841834491 1.023341230 2.850988e-02 3.039462176 1.311186e+01
## 61 0.18654150 7.646941064 0.644817399 1.502883e+00 2.232075563 4.787647e-03
## 62 1.39462236 1.681091719 0.000290170 3.788986e-02 0.447930094 3.847868e-02
## 63 0.10964474 1.311369182 0.687767321 3.261127e-01 0.100527092 1.411397e+00
## 64 0.33691100 2.762931262 0.030082486 3.916168e-01 3.267149722 1.097039e+00
## 65 0.82714543 1.073007434 4.901222765 1.787058e-02 2.154566206 9.414467e-02
## 66 2.73632236 1.515206848 0.211523203 2.621905e-01 0.034833138 8.001849e-02
## 67 3.27437574 0.456987638 0.021002744 6.696383e+00 2.320414756 3.090950e-02
## 68 1.09967785 0.109102764 1.697221721 6.194700e-01 0.005139607 5.230707e-02
## 69 1.80242260 0.058538202 1.167076803 1.187046e-02 1.799572376 1.715467e+00
## 70 0.38363415 1.281840968 0.059221054 1.118909e-01 0.280491614 7.644512e-01
## 71 0.46590443 0.528750020 0.020864783 7.570164e-02 2.523356401 9.727841e-02
## 72 1.44284888 1.598588962 0.417958180 4.864429e-01 1.083914064 1.471388e-02
## 73 1.59622355 1.009256559 0.290197327 2.429725e-01 1.340039451 4.194837e-03
## 74 0.28447533 0.085247645 0.835009176 4.386821e+00 0.028649800 3.331116e+00
## Dim 7 Dim 8 Dim 9 Dim 10 Dim 11
## 1 7.506729e-03 1.803686e-01 1.340237e-02 9.062034e-01 2.420998e+00
## 2 5.032377e+00 1.600291e+00 3.232352e+00 9.557168e-03 8.035080e-02
## 3 7.711611e-01 6.355405e+00 9.585872e-05 4.337799e+00 2.690578e-01
## 4 1.552717e-01 1.259782e+00 1.967863e+00 8.545001e-01 1.563450e+00
## 5 1.836433e-01 1.873446e-01 4.095861e-03 6.230880e+00 4.691653e-01
## 6 3.339073e-01 1.362618e+00 9.167611e-01 3.010150e-01 8.393684e-01
## 7 1.223719e+00 5.004553e+00 1.436641e+00 8.163826e-04 2.209280e-01
## 8 5.386357e-01 5.551387e-01 5.805395e-02 7.056190e-01 9.615288e-01
## 9 4.581080e-01 6.406572e-01 3.284543e-03 1.341971e-01 1.367744e+00
## 10 3.442746e-01 3.496173e-01 1.789742e-01 1.452092e+00 1.402758e+00
## 11 1.350328e-01 3.440667e-02 1.003194e-01 1.005522e-01 3.638925e-03
## 12 4.900385e-01 5.255964e+00 2.937932e-01 7.831430e-02 3.494319e-02
## 13 3.577031e-01 2.896743e+00 3.617267e+00 6.668194e+00 1.590307e-01
## 14 4.930888e-01 6.218623e-01 7.600695e-02 1.056340e+00 2.716342e-02
## 15 1.294765e+00 9.912699e-01 4.656178e-01 9.218394e+00 3.153329e-02
## 16 1.529811e+00 1.407817e-01 1.149291e-01 1.726727e-01 1.832177e+00
## 17 8.836436e-03 4.627121e-01 2.664090e+00 8.285461e-01 9.947723e-02
## 18 1.951068e-01 1.087333e+01 3.264047e+00 3.298896e+00 7.149155e-01
## 19 1.583822e+00 3.878103e-01 5.240826e-01 5.986252e+00 1.153936e+01
## 20 1.023569e+01 4.390985e+00 1.798914e-02 1.137843e-01 1.733394e-02
## 21 1.113825e-01 1.131921e-02 7.025073e-03 1.768845e+00 6.031506e-02
## 22 3.402611e+00 6.422101e-01 1.817715e+00 7.022587e-01 2.389763e-02
## 23 2.907321e-02 3.861212e-01 1.610746e-03 5.334935e-01 1.588014e+00
## 24 2.075563e-01 1.450700e+00 2.222159e+00 3.881664e-02 1.810513e+00
## 25 1.343962e+00 2.942363e-01 7.452444e-01 2.794071e-01 2.593521e-02
## 26 1.408498e+00 4.097696e+00 8.749056e+00 3.581806e-01 1.639320e+00
## 27 1.935424e+00 3.196097e-01 2.795491e-01 2.107135e+00 4.322160e+00
## 28 3.511478e-04 1.267587e+00 5.481340e-02 2.531080e-01 1.033959e+00
## 29 2.390600e+00 4.006497e-03 1.979202e-01 1.169522e+00 8.507033e-02
## 30 2.195757e+00 5.296983e-03 9.086336e-01 4.511980e-01 1.229508e-01
## 31 3.872526e-01 6.551785e-03 4.254122e-01 1.215207e-01 2.172987e+00
## 32 3.188284e+00 3.354823e-01 7.459871e-01 3.539343e+00 4.546100e+00
## 33 3.896943e+00 1.726119e-02 7.384802e-01 1.012003e+00 3.227283e+00
## 34 1.185985e+00 1.311903e+00 7.382442e-01 2.267406e-01 2.800930e+00
## 35 1.529838e+00 1.779451e+00 5.893521e+00 3.831505e-01 5.638899e-01
## 36 1.525099e-02 6.417574e-03 2.069056e-01 1.161771e+00 6.644461e-01
## 37 3.773997e-03 9.054868e-01 1.593411e+00 1.418433e+00 2.506800e+00
## 38 5.729161e-01 1.295460e+00 2.383153e+00 4.188666e-01 2.282972e+00
## 39 1.091687e+00 2.386118e+00 1.006933e-02 4.325538e+00 1.651045e-02
## 40 8.866600e-01 3.693072e-01 8.016824e-01 7.632779e-05 1.955908e+00
## 41 4.744846e+00 3.730182e+00 1.819889e+00 1.275116e-01 2.231478e+00
## 42 6.094297e-02 4.397885e+00 1.267359e+00 1.328858e-01 2.224270e-01
## 43 3.584942e-01 1.292278e+00 3.196995e-01 1.380835e+00 1.311439e+00
## 44 3.320095e-02 3.825916e-01 6.139913e-01 9.301119e-01 2.559782e+00
## 45 3.139701e+00 1.442508e+00 1.986975e-01 1.158243e+00 2.401792e-02
## 46 1.279676e-02 3.071596e-03 2.821288e+00 1.245419e+00 3.512542e-04
## 47 1.161695e+00 7.041186e-03 1.325721e-01 4.848558e-01 3.416288e+00
## 48 1.030975e+00 9.728538e-01 2.530595e-01 2.916457e-04 1.412831e-02
## 49 1.395664e-01 2.588078e-01 2.752906e+00 2.153827e-01 5.777930e-01
## 50 8.879736e-01 4.671634e-04 2.037159e+00 5.565668e-02 2.585777e-01
## 51 8.271827e+00 5.233474e-02 1.650844e+00 2.491019e+00 4.462921e-01
## 52 8.349908e-01 6.814318e-02 5.971534e-02 4.753446e-01 9.402006e-01
## 53 1.516261e+00 3.814050e-01 5.034155e+00 8.330867e-05 7.450669e+00
## 54 2.719486e+00 3.515192e-01 1.631500e+00 6.460068e-01 1.821566e-01
## 55 3.190941e+00 3.750480e-05 2.822390e+00 6.547489e-04 1.047877e-01
## 56 1.969532e-01 4.392394e-01 1.493277e-01 6.133230e-02 1.479445e+00
## 57 4.547934e-03 6.001899e-01 2.016597e-01 3.737243e+00 6.517244e-01
## 58 8.772024e-02 7.055328e+00 1.412287e+00 2.857733e+00 9.491961e-02
## 59 1.400891e+00 3.807110e-01 3.921111e+00 8.780784e-01 3.176500e+00
## 60 2.254547e+00 5.176055e-01 3.032719e-01 1.593100e+00 8.208588e-01
## 61 2.114065e-01 3.939464e+00 1.899111e+00 5.662428e-03 1.333208e-01
## 62 8.567726e-02 5.559404e-02 1.993765e+00 1.038373e+00 2.435336e-02
## 63 1.526612e+00 1.449939e-03 7.882468e+00 1.834753e-01 8.280290e+00
## 64 1.248957e-01 6.948407e-01 5.185055e-03 1.869212e-01 7.887425e-02
## 65 6.553214e-01 1.165010e-04 4.166445e-01 3.012865e+00 8.261139e-02
## 66 5.885749e-01 1.802799e-02 5.289734e+00 1.145745e+00 1.457172e-01
## 67 2.623603e+00 6.233421e+00 1.973027e+00 1.379701e+00 3.676768e+00
## 68 1.858522e-01 2.947271e+00 1.897373e+00 2.907491e+00 1.814557e-02
## 69 2.817434e+00 6.709813e-01 2.581000e-01 7.309255e+00 5.358084e-07
## 70 3.966851e+00 1.235571e-01 1.640878e-01 1.861432e-02 1.014675e-04
## 71 6.850628e-02 7.270192e-01 6.928716e-01 4.695856e-02 1.389139e-04
## 72 2.179616e+00 2.026481e-01 1.221470e-01 2.933362e-03 6.276777e-01
## 73 1.103938e+00 2.934367e-01 1.100067e-02 1.249410e+00 4.690721e+00
## 74 6.570497e-01 1.314114e+00 5.213440e-01 3.167730e-01 7.725625e-01
Interprétation des COS2 des variables sur les axes factoriels.
res.temperMax.ca$col$cos2 ### [toutes les lignes ; colonnes toutes, cf résultats *eigenvalue*] pour rechercher les mieux représentées dans un tableur.
## Dim 1 Dim 2 Dim 3 Dim 4 Dim 5
## Tmax_janv 9.753708e-01 0.015598297 0.001916587 0.0037407473 2.179366e-03
## Tmax_fevr 8.996470e-01 0.060057742 0.004019347 0.0198904471 1.064158e-03
## Tmax_mars 2.648487e-06 0.553267831 0.212679424 0.0434802977 5.421259e-02
## Tmax_avri 7.889839e-01 0.010470729 0.141428408 0.0162451143 3.199559e-03
## Tmax_mai 7.142740e-01 0.081097149 0.002967020 0.0239090123 5.701610e-03
## Tmax_juin 9.391320e-01 0.013680575 0.008219789 0.0006544983 7.060619e-03
## Tmax_juil 9.133717e-01 0.031135458 0.041557135 0.0002347645 2.720333e-04
## Tmax_aou 6.533015e-01 0.275143990 0.016946973 0.0006914264 2.732992e-02
## Tmax_sept 5.519742e-01 0.009930579 0.099799452 0.1951840563 5.457462e-05
## Tmax_octo 1.089642e-03 0.361548310 0.168776643 0.1896980576 1.845351e-01
## Tmax_nove 8.625939e-01 0.027797798 0.021434701 0.0088612024 4.641517e-02
## Tmax_dece 9.471288e-01 0.050155050 0.001269593 0.0004118204 4.345920e-04
## Dim 6 Dim 7 Dim 8 Dim 9 Dim 10
## Tmax_janv 0.0006435833 2.589577e-06 0.0004735035 7.086311e-05 9.965830e-07
## Tmax_fevr 0.0019213595 5.549441e-03 0.0073238883 1.321596e-04 1.134541e-04
## Tmax_mars 0.0409025357 8.496469e-02 0.0001413319 6.694602e-07 5.858966e-04
## Tmax_avri 0.0083146823 7.229788e-03 0.0138943551 7.042870e-03 1.366354e-04
## Tmax_mai 0.0809623145 3.818976e-03 0.0003946967 6.090221e-02 2.440269e-02
## Tmax_juin 0.0247346028 7.819242e-04 0.0001465277 5.063573e-04 2.337053e-03
## Tmax_juil 0.0006609076 6.712418e-03 0.0008022802 3.715510e-03 1.257138e-03
## Tmax_aou 0.0093880200 2.168331e-03 0.0024825302 5.058446e-03 7.422717e-03
## Tmax_sept 0.0372244214 6.876558e-02 0.0101093438 1.913150e-06 1.889706e-02
## Tmax_octo 0.0015752232 2.846635e-02 0.0214353210 3.044457e-03 2.007693e-02
## Tmax_nove 0.0157174871 3.461344e-04 0.0161552937 2.246365e-04 4.052249e-04
## Tmax_dece 0.0002113598 2.014379e-04 0.0001594338 2.456750e-07 1.386207e-06
## Dim 11
## Tmax_janv 2.710488e-06
## Tmax_fevr 2.809718e-04
## Tmax_mars 9.762083e-03
## Tmax_avri 3.053967e-03
## Tmax_mai 1.570357e-03
## Tmax_juin 2.746097e-03
## Tmax_juil 2.806372e-04
## Tmax_aou 6.614083e-05
## Tmax_sept 8.058802e-03
## Tmax_octo 1.975394e-02
## Tmax_nove 4.841880e-05
## Tmax_dece 2.632981e-05
Interprétation des COS2 des variables quantitatives supplémentaires sur les axes factoriels.
res.temperMax.ca$col.sup$cos2 ### [toutes les lignes ; colonnes toutes, cf résultats *eigenvalue*] pour rechercher les mieux représentées dans un tableur.
## Dim 1 Dim 2 Dim 3 Dim 4 Dim 5 Dim 6
## lat 0.55942746 0.10428973 0.04968068 0.07020953 0.102357262 0.0001057031
## long 0.04516227 0.08457691 0.43743646 0.08093739 0.001452151 0.0109937037
## Dim 7 Dim 8 Dim 9 Dim 10 Dim 11
## lat 0.003113198 0.011014263 0.002916216 0.003594508 5.453055e-06
## long 0.115358067 0.001503865 0.007617375 0.004185784 8.471592e-06
Interprétation des COS2 des variables qualitatives supplémentaires sur les axes factoriels.
res.temperMax.ca$quali.sup$cos2 ### [toutes les lignes ; colonnes toutes, cf résultats *eigenvalue*] pour rechercher les mieux représentées dans un tableur.
## Dim 1 Dim 2 Dim 3
## reg_admin. Occitanie 0.7945879 1.132521e-03 0.0849367036
## reg_admin.Auvergne-Rhone-Alpes 0.8569479 1.269663e-01 0.0018068318
## reg_admin.Bourgogne-Franche-Comte 0.9774923 8.227131e-05 0.0061667930
## reg_admin.Bretagne 0.8747406 7.672667e-02 0.0163382141
## reg_admin.Centre-Val de Loire 0.9514385 2.296822e-02 0.0064847685
## reg_admin.Corse 0.9893627 4.173513e-06 0.0086448743
## reg_admin.Grand-Est 0.9903416 3.648280e-03 0.0026700930
## reg_admin.Hauts-de-France 0.9479858 4.558184e-02 0.0003415250
## reg_admin.Ile-de-France 0.9278374 6.617481e-02 0.0002571179
## reg_admin.Normandie 0.3995142 4.083696e-01 0.0041971676
## reg_admin.Nouvelle-Aquitaine 0.8645602 1.620741e-03 0.1184775298
## reg_admin.Occitanie 0.7125262 2.709105e-01 0.0015687167
## reg_admin.Pays-de-la-Loire 0.5025532 3.474148e-01 0.0023105232
## reg_admin.Picardie 0.9380626 4.910944e-02 0.0046001176
## reg_admin.Provence-Alpes-Cotes-d'Azur 0.9573224 3.717675e-03 0.0271611078
## reg_clim.Climat de montagne 0.6618652 3.218625e-01 0.0016701344
## reg_clim.Climat mediterraneen 0.9816400 3.835101e-03 0.0138948765
## reg_clim.Climat nord-ouest 0.9103959 5.336141e-02 0.0005539288
## reg_clim.Climat oceanique aquitain 0.8961886 4.486064e-03 0.0875572747
## reg_clim.Climat oceanique Aquitain 0.5926396 1.824200e-02 0.3093626843
## reg_clim.Climat oceanique degrade 0.9784601 1.743015e-02 0.0013281760
## reg_clim.Climat oceanique nord-ouest 0.4509095 4.479412e-01 0.0191363655
## reg_clim.Climat semi-continental 0.9922350 6.191492e-07 0.0014905429
## Dim 4 Dim 5 Dim 6
## reg_admin. Occitanie 5.771261e-05 0.0925749811 6.841658e-03
## reg_admin.Auvergne-Rhone-Alpes 2.324859e-03 0.0072761091 3.812430e-03
## reg_admin.Bourgogne-Franche-Comte 1.184776e-02 0.0008238631 1.533949e-03
## reg_admin.Bretagne 3.402350e-03 0.0191485316 6.415578e-03
## reg_admin.Centre-Val de Loire 1.877548e-03 0.0123094006 1.136567e-03
## reg_admin.Corse 3.260686e-04 0.0002199334 1.649967e-04
## reg_admin.Grand-Est 1.271841e-03 0.0005155529 9.095962e-04
## reg_admin.Hauts-de-France 2.667909e-03 0.0004763954 1.419797e-04
## reg_admin.Ile-de-France 3.846889e-04 0.0038219143 2.099807e-05
## reg_admin.Normandie 9.922830e-02 0.0215447040 3.958790e-02
## reg_admin.Nouvelle-Aquitaine 1.027157e-05 0.0075090428 5.991628e-03
## reg_admin.Occitanie 7.766983e-04 0.0034968724 1.329341e-03
## reg_admin.Pays-de-la-Loire 1.905862e-03 0.0304921879 2.506622e-02
## reg_admin.Picardie 3.498523e-03 0.0021773087 1.291333e-04
## reg_admin.Provence-Alpes-Cotes-d'Azur 4.212160e-04 0.0035124996 3.262642e-04
## reg_clim.Climat de montagne 1.054093e-02 0.0025749391 3.530168e-04
## reg_clim.Climat mediterraneen 3.464796e-04 0.0001953920 2.737618e-05
## reg_clim.Climat nord-ouest 1.079714e-03 0.0286224878 8.203942e-04
## reg_clim.Climat oceanique aquitain 7.750856e-05 0.0095241807 7.568596e-04
## reg_clim.Climat oceanique Aquitain 3.318149e-02 0.0421848281 6.882417e-04
## reg_clim.Climat oceanique degrade 4.572670e-04 0.0016436236 1.307873e-04
## reg_clim.Climat oceanique nord-ouest 3.489024e-02 0.0297257688 1.778770e-03
## reg_clim.Climat semi-continental 3.038867e-03 0.0024524618 1.614014e-04
## Dim 7 Dim 8 Dim 9
## reg_admin. Occitanie 1.096419e-02 7.755636e-03 1.118111e-03
## reg_admin.Auvergne-Rhone-Alpes 1.491950e-05 4.147482e-05 8.724113e-05
## reg_admin.Bourgogne-Franche-Comte 1.105170e-03 5.338167e-06 8.701841e-05
## reg_admin.Bretagne 2.487997e-03 1.550300e-04 2.110557e-04
## reg_admin.Centre-Val de Loire 2.503406e-04 2.591508e-03 6.539731e-04
## reg_admin.Corse 1.255938e-04 1.016105e-03 4.336568e-05
## reg_admin.Grand-Est 2.139146e-04 1.031037e-04 2.536573e-04
## reg_admin.Hauts-de-France 1.559708e-03 6.269170e-04 7.794401e-05
## reg_admin.Ile-de-France 5.746454e-04 2.044015e-04 3.749240e-04
## reg_admin.Normandie 6.922666e-04 2.003425e-02 7.510589e-05
## reg_admin.Nouvelle-Aquitaine 1.051792e-04 7.234613e-04 9.106623e-04
## reg_admin.Occitanie 6.278758e-03 1.976929e-03 2.899789e-04
## reg_admin.Pays-de-la-Loire 5.215212e-02 1.396354e-02 1.159498e-02
## reg_admin.Picardie 5.799617e-04 4.414978e-04 1.252617e-04
## reg_admin.Provence-Alpes-Cotes-d'Azur 5.705472e-03 5.942769e-04 9.069948e-04
## reg_clim.Climat de montagne 3.754665e-05 8.309516e-04 4.800464e-07
## reg_clim.Climat mediterraneen 3.761884e-05 6.596655e-07 1.952355e-05
## reg_clim.Climat nord-ouest 3.859590e-04 3.070421e-03 1.621800e-03
## reg_clim.Climat oceanique aquitain 3.707633e-06 1.277721e-03 3.268037e-06
## reg_clim.Climat oceanique Aquitain 2.112446e-03 4.034877e-04 6.520261e-04
## reg_clim.Climat oceanique degrade 2.612452e-04 2.377282e-04 1.843730e-05
## reg_clim.Climat oceanique nord-ouest 1.297661e-02 2.624786e-03 6.191872e-06
## reg_clim.Climat semi-continental 8.719029e-05 1.568598e-04 3.389597e-04
## Dim 10 Dim 11
## reg_admin. Occitanie 1.029321e-06 2.952204e-05
## reg_admin.Auvergne-Rhone-Alpes 7.050974e-04 1.681494e-05
## reg_admin.Bourgogne-Franche-Comte 3.356546e-05 8.219640e-04
## reg_admin.Bretagne 1.500042e-04 2.239208e-04
## reg_admin.Centre-Val de Loire 2.812681e-04 7.881824e-06
## reg_admin.Corse 8.915046e-06 8.330631e-05
## reg_admin.Grand-Est 4.494936e-05 2.740501e-05
## reg_admin.Hauts-de-France 1.524227e-04 3.875467e-04
## reg_admin.Ile-de-France 1.609720e-04 1.880824e-04
## reg_admin.Normandie 4.749677e-03 2.006910e-03
## reg_admin.Nouvelle-Aquitaine 9.993810e-07 9.025445e-05
## reg_admin.Occitanie 8.291288e-04 1.688426e-05
## reg_admin.Pays-de-la-Loire 1.191500e-02 6.315229e-04
## reg_admin.Picardie 8.118113e-04 4.643065e-04
## reg_admin.Provence-Alpes-Cotes-d'Azur 1.836196e-04 1.485071e-04
## reg_clim.Climat de montagne 1.800953e-04 8.411317e-05
## reg_clim.Climat mediterraneen 1.886992e-07 2.793462e-06
## reg_clim.Climat nord-ouest 8.779953e-05 1.537744e-07
## reg_clim.Climat oceanique aquitain 1.925432e-05 1.056073e-04
## reg_clim.Climat oceanique Aquitain 5.220410e-04 1.118529e-05
## reg_clim.Climat oceanique degrade 2.818396e-05 4.325151e-06
## reg_clim.Climat oceanique nord-ouest 1.008096e-05 4.077106e-07
## reg_clim.Climat semi-continental 1.611074e-06 3.651556e-05
Interprétation des qualités de représentation des individus sur les axes factoriels.
res.temperMax.ca$row$cos2 ### [ligne toutes ; colonnes toutes] pour rechercher les mieux représentées dans un tableur.
## Dim 1 Dim 2 Dim 3 Dim 4 Dim 5 Dim 6
## 1 0.90401976 7.655012e-02 2.033067e-04 7.166296e-03 6.308970e-03 3.344952e-03
## 2 0.98948416 2.841900e-03 1.194074e-03 1.421885e-04 1.347038e-03 5.098953e-04
## 3 0.91687521 4.320936e-02 6.865043e-05 1.462094e-02 1.039505e-03 5.407557e-04
## 4 0.98251428 1.971041e-04 1.423204e-02 1.255815e-04 3.618709e-04 1.054000e-03
## 5 0.82651167 1.017908e-01 2.572314e-04 5.407976e-02 9.512728e-03 4.715127e-05
## 6 0.89610254 3.367892e-02 4.087809e-02 2.828410e-03 1.496912e-02 8.032651e-05
## 7 0.47598624 4.185387e-01 5.655550e-02 1.916346e-02 1.645240e-03 5.551250e-03
## 8 0.96799557 1.785466e-02 8.774072e-05 3.458203e-03 3.528399e-03 4.411335e-03
## 9 0.98179202 5.873363e-04 1.417741e-02 2.819177e-04 1.814296e-03 4.753473e-04
## 10 0.93806264 4.910944e-02 4.600118e-03 3.498523e-03 2.177309e-03 1.291333e-04
## 11 0.59263957 1.824200e-02 3.093627e-01 3.318149e-02 4.218483e-02 6.882417e-04
## 12 0.95308379 6.269223e-03 2.809912e-02 4.606457e-04 2.077521e-03 5.944429e-03
## 13 0.93500451 1.208974e-02 3.853792e-02 2.610872e-03 2.363050e-04 1.401472e-03
## 14 0.94205414 5.966668e-03 2.926539e-02 1.210035e-02 3.190481e-03 1.398761e-03
## 15 0.97258057 2.290573e-04 2.282157e-03 8.778735e-03 2.403318e-04 4.513884e-03
## 16 0.83717619 9.725944e-02 1.563023e-02 9.288401e-03 2.044281e-02 1.456355e-02
## 17 0.23321683 5.178079e-01 5.242666e-02 7.851395e-02 1.220279e-03 9.160156e-02
## 18 0.97824767 6.135724e-05 7.335734e-03 5.061754e-03 6.039691e-04 9.879312e-05
## 19 0.97597327 1.238975e-02 3.660672e-03 5.905583e-05 5.937838e-04 1.694742e-04
## 20 0.65860368 2.256568e-01 2.784840e-02 1.170939e-04 3.552286e-03 9.378569e-05
## 21 0.54108064 1.700663e-01 9.905460e-02 1.271302e-01 4.498181e-02 4.505256e-03
## 22 0.97658695 1.224928e-02 7.129830e-05 4.385619e-04 3.179493e-03 2.643045e-03
## 23 0.49387973 3.651179e-01 1.133721e-02 4.432349e-02 2.173415e-02 5.042044e-02
## 24 0.65061396 1.221379e-01 2.613581e-02 2.123051e-02 1.599041e-02 1.273133e-01
## 25 0.60945505 3.023289e-01 1.596129e-02 9.853911e-03 1.455045e-02 3.302392e-02
## 26 0.85946412 4.067378e-02 1.840351e-02 6.143831e-02 4.110244e-06 2.975404e-03
## 27 0.98505331 2.592570e-04 1.171263e-02 7.149492e-05 1.765840e-05 3.997026e-05
## 28 0.05791367 4.100393e-01 3.688849e-01 7.546014e-02 6.873960e-02 6.148693e-04
## 29 0.91869193 5.303681e-02 8.577446e-03 8.978831e-04 3.469551e-03 9.038859e-03
## 30 0.98633189 1.447240e-03 7.163466e-03 5.672311e-07 1.839893e-03 5.068868e-04
## 31 0.82084812 1.245331e-01 1.569058e-02 1.790377e-02 1.416163e-02 3.650693e-03
## 32 0.97612660 1.190322e-02 1.835072e-03 4.782015e-04 2.130747e-03 3.128240e-03
## 33 0.81322921 1.339219e-01 2.414889e-03 1.756833e-02 9.206153e-03 9.725261e-03
## 34 0.90818109 3.117119e-03 2.742917e-02 2.338937e-03 2.506329e-02 2.965337e-02
## 35 0.75142881 1.708589e-01 5.956205e-05 7.094822e-03 1.027557e-02 6.505100e-03
## 36 0.90617455 8.357871e-02 1.234247e-04 1.463226e-03 6.969582e-03 1.973553e-04
## 37 0.15976379 3.929575e-01 9.382738e-03 1.975268e-01 1.693986e-01 2.767942e-02
## 38 0.89021549 2.094412e-04 3.624811e-02 1.950039e-04 5.704732e-02 5.351151e-03
## 39 0.79511783 1.173235e-01 1.205465e-02 3.519222e-03 3.390714e-02 2.679991e-03
## 40 0.70798908 2.593630e-01 1.424586e-03 1.486071e-02 9.113934e-03 4.959706e-03
## 41 0.93460904 4.854317e-02 6.925177e-04 3.262728e-03 2.085784e-05 4.216288e-04
## 42 0.78463892 1.011052e-01 6.464182e-02 2.871216e-02 6.784675e-05 1.483283e-04
## 43 0.78725502 1.209788e-01 5.660687e-04 4.722303e-02 3.374509e-02 2.870438e-03
## 44 0.93229677 3.755364e-02 5.086601e-03 1.898598e-02 1.759799e-03 1.492517e-04
## 45 0.94964734 1.034297e-02 1.743587e-02 2.315001e-03 5.790074e-05 1.880592e-03
## 46 0.98679951 3.855307e-03 7.024330e-03 6.921119e-04 9.925185e-06 5.429175e-04
## 47 0.50818541 4.377143e-01 7.084709e-04 3.340657e-02 1.313518e-02 2.251709e-03
## 48 0.79458793 1.132521e-03 8.493670e-02 5.771261e-05 9.257498e-02 6.841658e-03
## 49 0.97700337 8.171893e-03 9.917385e-03 2.345323e-03 5.298623e-05 9.365466e-04
## 50 0.99023079 2.058304e-03 3.810326e-03 4.352753e-04 7.457805e-04 1.461732e-03
## 51 0.11786748 5.652252e-01 8.139940e-04 1.248180e-02 1.559642e-02 9.345631e-02
## 52 0.92557463 4.751588e-03 3.555570e-02 2.039762e-02 4.540606e-03 3.431580e-03
## 53 0.97741085 3.889068e-03 8.547134e-03 2.639990e-04 1.817849e-03 2.948819e-03
## 54 0.74663846 1.138805e-01 8.696756e-02 2.263554e-02 2.037940e-03 9.183133e-07
## 55 0.61504853 1.938424e-01 1.170122e-01 2.913257e-02 6.395390e-03 5.163121e-04
## 56 0.91450868 7.238987e-02 8.615646e-05 6.779672e-03 3.517476e-03 5.704865e-04
## 57 0.95355977 5.431773e-04 3.579018e-02 1.285367e-03 4.882581e-03 2.441372e-05
## 58 0.96062658 1.161658e-02 9.187395e-03 1.654033e-03 2.207415e-04 5.890450e-03
## 59 0.85471933 6.628900e-02 8.497592e-03 6.784677e-03 2.107068e-02 1.270106e-02
## 60 0.76408187 1.160126e-01 1.695658e-02 2.537912e-04 2.151807e-02 6.901574e-02
## 61 0.29814702 6.312279e-01 1.400227e-02 1.753276e-02 2.070900e-02 3.302553e-05
## 62 0.93708564 5.833880e-02 2.648998e-06 1.858299e-04 1.747142e-03 1.115875e-04
## 63 0.51119829 3.157694e-01 4.356620e-02 1.109786e-02 2.720696e-03 2.840033e-02
## 64 0.66234152 2.805306e-01 8.035023e-04 5.619505e-03 3.728474e-02 9.308113e-03
## 65 0.85491707 5.727806e-02 6.882610e-02 1.348189e-04 1.292699e-02 4.199625e-04
## 66 0.96718395 2.766032e-02 1.015796e-03 6.764390e-04 7.147098e-05 1.220688e-04
## 67 0.96659191 6.967268e-03 8.423591e-05 1.442862e-02 3.976267e-03 3.938033e-05
## 68 0.96031665 4.920715e-03 2.013697e-02 3.948564e-03 2.605399e-05 1.971433e-04
## 69 0.97107234 1.628838e-03 8.542815e-03 4.668018e-05 5.628071e-03 3.988872e-03
## 70 0.81919766 1.413673e-01 1.718123e-03 1.743958e-03 3.476855e-03 7.045209e-03
## 71 0.91039593 5.336141e-02 5.539288e-04 1.079714e-03 2.862249e-02 8.203942e-04
## 72 0.93193891 5.332696e-02 3.667803e-03 2.293340e-03 4.064029e-03 4.101724e-05
## 73 0.95608316 3.122101e-02 2.361576e-03 1.062255e-03 4.659238e-03 1.084400e-05
## 74 0.80613984 1.247647e-02 3.214872e-02 9.073725e-02 4.712840e-04 4.074067e-02
## Dim 7 Dim 8 Dim 9 Dim 10 Dim 11
## 1 1.953649e-05 3.518828e-04 1.449143e-05 7.826872e-04 1.237992e-03
## 2 2.969342e-03 7.078274e-04 7.923911e-04 1.871471e-06 9.315477e-06
## 3 2.594637e-03 1.602935e-02 1.339976e-07 4.843592e-03 1.778709e-04
## 4 9.380249e-05 5.705039e-04 4.939134e-04 1.713172e-04 1.855811e-04
## 5 5.762858e-04 4.407023e-04 5.340006e-06 6.489015e-03 2.892787e-04
## 6 1.912713e-03 5.851124e-03 2.181795e-03 5.722409e-04 9.447228e-04
## 7 4.915898e-03 1.507050e-02 2.397746e-03 1.088382e-06 1.743811e-04
## 8 1.023525e-03 7.907622e-04 4.583199e-05 4.449796e-04 3.589990e-04
## 9 3.186908e-04 3.340940e-04 9.493152e-07 3.098213e-05 1.869538e-04
## 10 5.799617e-04 4.414978e-04 1.252617e-04 8.118113e-04 4.643065e-04
## 11 2.112446e-03 4.034877e-04 6.520261e-04 5.220410e-04 1.118529e-05
## 12 4.344971e-04 3.493417e-03 1.082261e-04 2.304435e-05 6.087612e-06
## 13 5.767270e-04 3.501054e-03 2.423048e-03 3.567980e-03 5.037978e-05
## 14 2.205688e-03 2.085232e-03 1.412557e-04 1.568157e-03 2.387433e-05
## 15 2.780612e-03 1.595815e-03 4.154443e-04 6.570090e-03 1.330597e-05
## 16 4.107412e-03 2.833465e-04 1.282018e-04 1.538582e-04 9.665526e-04
## 17 1.267991e-04 4.977270e-03 1.588261e-02 3.945685e-03 2.804726e-04
## 18 1.532465e-04 6.402092e-03 1.065144e-03 8.599109e-04 1.103318e-04
## 19 1.785415e-03 3.277128e-04 2.454519e-04 2.239518e-03 2.555890e-03
## 20 6.342913e-02 2.039740e-02 4.631438e-05 2.340026e-04 2.110555e-05
## 21 2.034399e-03 1.549802e-04 5.330938e-05 1.072199e-02 2.164574e-04
## 22 3.370798e-03 4.769128e-04 7.481351e-04 2.308789e-04 4.651608e-06
## 23 4.743440e-04 4.722429e-03 1.091846e-05 2.888659e-03 5.090757e-03
## 24 2.934821e-03 1.537674e-02 1.305433e-02 1.821504e-04 5.030082e-03
## 25 1.010474e-02 1.658349e-03 2.327935e-03 6.971760e-04 3.831384e-05
## 26 2.805234e-03 6.117781e-03 7.239489e-03 2.367455e-04 6.415115e-04
## 27 1.434392e-03 1.775632e-04 8.607629e-05 5.182636e-04 6.293907e-04
## 28 5.111263e-06 1.383112e-02 3.314811e-04 1.222674e-03 2.957122e-03
## 29 5.217856e-03 6.555281e-06 1.794771e-04 8.471497e-04 3.648304e-05
## 30 2.162978e-03 3.911448e-06 3.718693e-04 1.475033e-04 2.379726e-05
## 31 1.200437e-03 1.522460e-05 5.478841e-04 1.250149e-04 1.323518e-03
## 32 2.410269e-03 1.901163e-04 2.343008e-04 8.879694e-04 6.752668e-04
## 33 1.046940e-02 3.476240e-05 8.242717e-04 9.022904e-04 1.703580e-03
## 34 1.612442e-03 1.337051e-03 4.170026e-04 1.023060e-04 7.482296e-04
## 35 1.482284e-02 1.292448e-02 2.372436e-02 1.232032e-03 1.073514e-03
## 36 3.660303e-05 1.154599e-05 2.063123e-04 9.253510e-04 3.133333e-04
## 37 7.079396e-05 1.273263e-02 1.241813e-02 8.830190e-03 9.239365e-03
## 38 1.969877e-03 3.338977e-03 3.404348e-03 4.779589e-04 1.542327e-03
## 39 8.938323e-03 1.464505e-02 3.425250e-05 1.175343e-02 2.656100e-05
## 40 1.079047e-03 3.369086e-04 4.053398e-04 3.082709e-08 4.676913e-04
## 41 6.729785e-03 3.965979e-03 1.072402e-03 6.001990e-05 6.218697e-04
## 42 3.173811e-04 1.716891e-02 2.742149e-03 2.296692e-04 2.276003e-04
## 43 1.212819e-03 3.277263e-03 4.493551e-04 1.550324e-03 8.717457e-04
## 44 9.978946e-05 8.620070e-04 7.667084e-04 9.277608e-04 1.511697e-03
## 45 1.225744e-02 4.221540e-03 3.222833e-04 1.500645e-03 1.842361e-05
## 46 8.601622e-06 1.547696e-06 7.878827e-04 2.778193e-04 4.639056e-08
## 47 2.600441e-03 1.181522e-05 1.232936e-04 3.601919e-04 1.502577e-03
## 48 1.096419e-02 7.755636e-03 1.118111e-03 1.029321e-06 2.952204e-05
## 49 1.320252e-04 1.835247e-04 1.081935e-03 6.761663e-05 1.073930e-04
## 50 6.191262e-04 2.441682e-07 5.901168e-04 1.287844e-05 3.542403e-05
## 51 1.623758e-01 7.701074e-04 1.346356e-02 1.622795e-02 1.721341e-03
## 52 3.829489e-03 2.342733e-04 1.137834e-04 7.234930e-04 8.472418e-04
## 53 1.449650e-03 2.733487e-04 1.999630e-03 2.643298e-08 1.399627e-03
## 54 1.935770e-02 1.875674e-03 4.824894e-03 1.526057e-03 2.547650e-04
## 55 2.769460e-02 2.440082e-07 1.017717e-02 1.885896e-06 1.786959e-04
## 56 4.703542e-04 7.863292e-04 1.481617e-04 4.860912e-05 6.942061e-04
## 57 9.337656e-06 9.237483e-04 1.720191e-04 2.546489e-03 2.629150e-04
## 58 1.367538e-04 8.245139e-03 9.147370e-04 1.478522e-03 2.907523e-05
## 59 9.912639e-03 2.019397e-03 1.152731e-02 2.061983e-03 4.416332e-03
## 60 7.927710e-03 1.364359e-03 4.430517e-04 1.859081e-03 5.671327e-04
## 61 9.742057e-04 1.360851e-02 3.635938e-03 8.659677e-06 1.207140e-04
## 62 1.659837e-04 8.073643e-05 1.604751e-03 6.676055e-04 9.270147e-06
## 63 2.052143e-02 1.461066e-05 4.402252e-02 8.185084e-04 2.187017e-02
## 64 7.079321e-04 2.952369e-03 1.221044e-05 3.516166e-04 8.784299e-05
## 65 1.952872e-03 2.602498e-07 5.158446e-04 2.979654e-03 4.837122e-05
## 66 5.998199e-04 1.377234e-05 2.239684e-03 3.875020e-04 2.917815e-05
## 67 2.233007e-03 3.977037e-03 6.976840e-04 3.897118e-04 6.148737e-04
## 68 4.679440e-04 5.562725e-03 1.984782e-03 2.429469e-03 8.976864e-06
## 69 4.376490e-03 7.813111e-04 1.665690e-04 3.768010e-03 1.635345e-10
## 70 2.442276e-02 5.702399e-04 4.197193e-04 3.803318e-05 1.227449e-07
## 71 3.859590e-04 3.070421e-03 1.621800e-03 8.779953e-05 1.537744e-07
## 72 4.059045e-03 2.828967e-04 9.450623e-05 1.812910e-06 2.296722e-04
## 73 1.906444e-03 3.798700e-04 7.892819e-06 7.160625e-04 1.591646e-03
## 74 5.368356e-03 8.048546e-03 1.769707e-03 8.589303e-04 1.240236e-03
fviz_ca_col(res.temperMax.ca,
col.col = "contrib",
axes = 1:2,
gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"))
fviz_ca_row(res.temperMax.ca,
col.row = "contrib",
axes = 1:2,
gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"))
fviz_ca_col(res.temperMax.ca,
col.col = "cos2",
axes = 1:2,
gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"))
– en fonction du Cos2
## Lignes avec un cos2 > 0.8
fviz_ca_row(res.temperMax.ca,
select.row = list(cos2 = 0.8),
col.row = "cos2",
axes = 1:2,
gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"))
– en fonction des contributions
## Top 5 des contributions lignes et colonnes
fviz_ca_biplot(res.temperMax.ca,
select.row = list(contrib = 5),
#select.col = list(contrib = 5), # si on veut toutes les variables
arrow = c (TRUE, TRUE), # pour mieux voir la proximité avec les axes
axes = 1:2,
repel = TRUE, # pour éviter les chevauchements dans biplot
)
Il est possible de faire des Biplots asymétriques, où les coordonnées sont pondérées par le poids de la valeur propre (en fait la racine carrée de la valeur propre eigenvalue). - Voir : Biplot asymétrique in : http://www.sthda.com/french/articles/38-methodes-des-composantes-principales-dans-r-guide-pratique/74-afc-analyse-factorielle-des-correspondances-avec-r-l-essentiel/#r-code-to-comput-ca
Identification des variables les plus remarquables (moins efficace que dans PCA car pas significatives en l’absence de test) par composante. Simple tri ds coordonnées.
### fonction dimdesc() [in FactoMineR]
res.desc <- dimdesc(res.temperMax.ca, axes = c(1,2))
– Pour les lignes (pour nous, les individus)
### Description de la dimension 1 pour 4 lignes
head(res.desc[[1]]$row, 4)
## coord
## 46 -0.2579054
## 50 -0.2570897
## 32 -0.2503280
## 67 -0.2185894
– Pour les colonnes (pour nous, les variables)
### Description de la dimension 1 pour 4 colonnes
head(res.desc[[1]]$col, 4)
## coord
## long -0.24529634
## lat -0.13864262
## Tmax_juil -0.08928686
## Tmax_juin -0.08508948
– Pour les lignes (pour nous, les individus)
### Description de la dimension 2 pour toutes les lignes
res.desc[[2]]$row
## coord
## 40 -0.101037066
## 47 -0.091146498
## 61 -0.074812741
## 7 -0.067174065
## 64 -0.044490756
## 43 -0.037315019
## 5 -0.035343697
## 20 -0.035071718
## 28 -0.031942187
## 29 -0.031422714
## 42 -0.029073972
## 63 -0.028530568
## 26 -0.028319194
## 70 -0.028088868
## 32 -0.027643211
## 55 -0.027030153
## 65 -0.026450000
## 54 -0.022428567
## 44 -0.022216007
## 24 -0.018476764
## 21 -0.017001894
## 58 -0.015293585
## 6 -0.014183765
## 34 -0.009807503
## 45 -0.009132830
## 68 -0.008471922
## 74 -0.007692716
## 11 -0.006328428
## 69 -0.005697191
## 9 -0.005084419
## 27 -0.003204908
## 4 -0.003191371
## 57 -0.003032058
## 15 -0.002077821
## 38 -0.001348438
## 18 0.001532943
## 48 0.001902285
## 52 0.006419716
## 30 0.006785105
## 14 0.007260725
## 53 0.011571630
## 50 0.011721177
## 2 0.012116271
## 12 0.015783306
## 46 0.016120389
## 13 0.016218903
## 67 0.018558322
## 19 0.018593790
## 59 0.019078997
## 49 0.019394101
## 71 0.019394688
## 8 0.019583128
## 3 0.023224955
## 22 0.023390223
## 39 0.023423817
## 35 0.026564124
## 73 0.027407914
## 37 0.031322585
## 23 0.032655630
## 51 0.032940023
## 72 0.034960495
## 66 0.035067536
## 56 0.035291028
## 10 0.035564192
## 62 0.035635168
## 60 0.036890465
## 1 0.036893509
## 36 0.037784244
## 41 0.039114918
## 16 0.039470123
## 17 0.039521328
## 25 0.041284999
## 31 0.041972202
## 33 0.046950029
– Pour les colonnes (pour nous, les variables)
### Description de la dimension 2 pour toutes les colonnes
res.desc[[2]]$col
## coord
## long -0.335682804
## Tmax_dece -0.106322745
## Tmax_aou -0.034207237
## Tmax_juil -0.016485094
## Tmax_avri -0.007189021
## Tmax_sept -0.003618042
## Tmax_juin 0.010269865
## Tmax_mai 0.011484187
## Tmax_nove 0.018288574
## Tmax_octo 0.020837565
## Tmax_mars 0.038579648
## Tmax_fevr 0.044808905
## Tmax_janv 0.059139375
## lat 0.059861232
– En premier, création des graphes
# Scree plot
scree.plot <- fviz_eig(res.temperMax.ca)
# Biplot of row and column variables
biplot.ca <- fviz_ca_biplot(res.temperMax.ca)
– En second, export des graphes
library(ggpubr)
## Export d'un pdf (un graphe par page)
ggexport(plotlist = list(scree.plot, biplot.ca),
filename = "res.temperMax.ca.pdf")
## Export d'un png par graphe
ggexport(plotlist = list(scree.plot, biplot.ca),
filename = "res.temperMax.ca.png")
## [1] "res.temperMax.ca%03d.png"
A l’aide de write.table() [package FactoMineR], write.infile semble inaccessible à la date de rédaction !
# Export into a TXT file de la qualité de représentation des variables
write.table(res.temperMax.ca$col$cos2, "res.temperMax.ca$col$cos2.txt", sep = "\t")
# Export into a CSV file des contributions des individus
write.table(res.temperMax.ca$row$contrib, file="res.temperMax.ca$row$contrib.csv", col.names=TRUE, sep = ";")
Le package FactoInvestigate décrit et interprète automatiquement les résultats de votre analyse factorielle (ACP, AFC ou ACM) en choisissant les graphes les plus appropriés pour le rapport (sources : http://factominer.free.fr/reporting/index_fr.html, mais ce package semble inaccessible à la date de rédaction !)
## install.packages(FactoInvestigate)
## library(Investigate)
## Investigate(res.temperMax.ca)