Analyse factorielles de correspondances binaires (AFC) avec R et FactoMineR sur des données brutes de précipitations (Sources : www.meteociel.fr) Reconstitution de l’année 2010 (exemple de novembre) : http://www.meteociel.fr/climatologie/climato.php?mois=11&annee=2010
Pour aller plus loin :
Avec mes fichiers exemples, préférez les paramètres nord-américains (“.” séparateur de décimales, “,” séparateur de miliers).
Salle C210, identifiant => “geographie2” !
### setwd("D:/Users/geographie2/vgodard/ADD/precipitation/R")
### respecter ce cheminement si "geographie2"
### getwd()
# Remove all objects
rm(list = ls() )
precipit <- read.csv("precipitation.csv",
sep = ";",
dec =".",### Si param. régio. non US, remplacer le "." par une ","
stringsAsFactors = FALSE) # si stringsAsFactors = FALSE on perd les modalités si qualitative
Installer et exécuter préalablement la librairie “gplots”
### Avec la librairie gplots
## install.packages("gplots") ## si pas déjà installé !
library("gplots")
Quand la table de contingence ne contient pas trop de variables ou d’individus, il est possible de représenter les relations entre eux. Ici, ce n’est pas le cas.
# 1. Convertion des données en table
#dt <- as.table(as.matrix(precipit))
# 2. Graphe
#balloonplot(t(dt), main ="precipit", xlab ="", ylab="",
# label = FALSE, show.margins = FALSE)
Pour une petite table de contingence, il est possible de tester la significativité du lien de dépendance à l’aide d’un test du khi-deux.
# Calcul de la statistique du Chi-square (Khi-deux)
chisq <- chisq.test(precipit[,2:13])
chisq
##
## Pearson's Chi-squared test
##
## data: precipit[, 2:13]
## X-squared = 13818, df = 803, p-value < 2.2e-16
# Calcul de la valeur du Khi-deux
chisq$statistic
## X-squared
## 13818.48
# Calcul du degrés de liberté (Degree of freedom)
df <- (nrow(precipit) - 1) * (ncol(precipit) - 1)
df
## [1] 876
# Calcul de la P-value
pval <- pchisq(chisq$statistic, df = df, lower.tail = FALSE)
pval
## X-squared
## 0
# ou
chisq$p.value
## [1] 0
Au risque 5% (communément admis), on rejette l’hypothèse nulle d’indépendance entre les lignes et les colonnes.
Sur les grosses tables, il est pratiquement toujours significatif (p-value < 0.05)
Installer et exécuter préalablement les librairies “FactoMineR”, “factoextra”, puis les charger
### Avec la librairie FactoMineR et factoextra
## install.packages(c("FactoMineR", "factoextra")) ## si pas déjà installés !
library("FactoMineR")
library("factoextra")
L’AFC avec tous les éléments actifs (73 lignes et 12 variables)
res.precipit.ca <- CA(precipit[,2:13],
col.sup = NULL,
row.sup = NULL,
axes = 1:2,
ncp = 12,
graph = TRUE)
Le graphique avec la fonction Biplot (cf. infra) apporte un net gain de lisibilité.
Si ce n’est déjà fait, installer le package “factoextra”, puis le charger
## install.packages("factoextra")
library("factoextra")
Si on veut connaître tous les résultats de la fonction CA dans Factominer et/ou factoextra :
### Listage des résultats
print(res.precipit.ca)
## **Results of the Correspondence Analysis (CA)**
## The row variable has 74 categories; the column variable has 12 categories
## The chi square of independence between the two variables is equal to 13818.48 (p-value = 0 ).
## *The results are available in the following objects:
##
## name description
## 1 "$eig" "eigenvalues"
## 2 "$col" "results for the columns"
## 3 "$col$coord" "coord. for the columns"
## 4 "$col$cos2" "cos2 for the columns"
## 5 "$col$contrib" "contributions of the columns"
## 6 "$row" "results for the rows"
## 7 "$row$coord" "coord. for the rows"
## 8 "$row$cos2" "cos2 for the rows"
## 9 "$row$contrib" "contributions of the rows"
## 10 "$call" "summary called parameters"
## 11 "$call$marge.col" "weights of the columns"
## 12 "$call$marge.row" "weights of the rows"
La somme des eigenvalues égale le nombre d’axes (ici 12).
Contrairement à l’ACP eigenvalue n’est jamais supérieure à 1.
eig.val <- get_eigenvalue(res.precipit.ca)
eig.val
## eigenvalue variance.percent cumulative.variance.percent
## Dim.1 0.078385677 33.448734 33.44873
## Dim.2 0.044568340 19.018201 52.46694
## Dim.3 0.026971508 11.509281 63.97622
## Dim.4 0.019014946 8.114057 72.09027
## Dim.5 0.015945733 6.804363 78.89464
## Dim.6 0.014238942 6.076041 84.97068
## Dim.7 0.011521787 4.916577 89.88725
## Dim.8 0.009147320 3.903344 93.79060
## Dim.9 0.005853046 2.497612 96.28821
## Dim.10 0.005762790 2.459098 98.74731
## Dim.11 0.002935629 1.252691 100.00000
Il est aussi possible d’apprécier les ruptures dans la succession des eigenvalues.
# Visualisation des eigenvalues
fviz_eig(res.precipit.ca, addlabels = TRUE, ylim = c(0, 40)) # calibrer le ylim avec la lecture du tableau précédent
Il n’y a pas de règles pour choisir le nombre d’axes. Eventuellement, retenir les axes qui ont une eigenvalues d’une valeur supérieure à :
1/(nrow(precipit[, 2:13])-1) ou
1/(ncol(precipit[, 2:13])-1) Sources : http://www.sthda.com/english/articles/31-principal-component-methods-in-r-practical-guide/113-ca-correspondence-analysis-in-r-essentials/#r-code-to-compute-ca (According to M. T. Bendixen 1995)
Les paramètres les plus utiles :
get_ca_row(res.precipit.ca)
## Correspondence Analysis - Results for rows
## ===================================================
## Name Description
## 1 "$coord" "Coordinates for the rows"
## 2 "$cos2" "Cos2 for the rows"
## 3 "$contrib" "contributions of the rows"
## 4 "$inertia" "Inertia of the rows"
Interprétation des coordonnées des variables sur les axes factoriels (les colonnes : col).
res.precipit.ca$col$coord ### [toutes les lignes ; colonnes 1 à 12, cf résultats *eigenvalue*]
## Dim 1 Dim 2 Dim 3 Dim 4 Dim 5
## P_janv -0.403800560 -0.041928299 0.009358527 0.11648500 0.0692840303
## P_fevr -0.071271015 -0.213459205 0.023102932 -0.11710062 0.0277582325
## P_mars -0.163810218 -0.001082994 0.230502787 -0.18681302 0.0690136959
## P_avri -0.183343425 0.122745976 0.106176639 0.16848158 0.0003444635
## P_mai 0.034689204 0.385134518 0.158044012 0.06301770 0.1104083329
## P_juin 0.005007464 0.323680069 -0.372161938 -0.09508621 -0.0054007993
## P_juil 0.689269122 0.192208430 0.085267742 0.26446960 -0.0932188287
## P_aou 0.576659824 -0.288014160 0.066486741 0.01990929 0.1540788800
## P_sept 0.250921349 0.044682807 0.097314291 -0.26885550 -0.2416328772
## P_octo -0.296738918 0.038696168 0.125846124 0.01546063 -0.0431004248
## P_nove -0.089758233 -0.203982909 -0.099171534 0.13934105 -0.1666921217
## P_dece 0.076778840 -0.161040381 -0.184617994 -0.04211552 0.1956272693
## Dim 6 Dim 7 Dim 8 Dim 9 Dim 10
## P_janv 0.13594673 0.15672570 0.014433476 0.040410609 0.06260620
## P_fevr 0.08548207 -0.08711814 -0.137017764 0.122433592 -0.09247056
## P_mars 0.04902179 0.04296783 0.202814283 -0.084166513 -0.13580632
## P_avri 0.12856902 0.17544944 -0.005907378 0.065225768 0.06664950
## P_mai -0.19714924 0.03563827 -0.113163234 0.001832712 -0.04378141
## P_juin 0.11413299 -0.01230885 -0.018789194 -0.054857616 -0.02314662
## P_juil 0.14294313 -0.11943949 0.154976571 0.108555942 -0.03974039
## P_aou 0.09612039 0.04934552 -0.105798347 -0.147175530 0.04803331
## P_sept -0.05552090 0.11134824 -0.001309708 0.044990607 0.10090203
## P_octo 0.01484442 -0.22720469 -0.002918824 -0.060334421 0.10113278
## P_nove -0.11086329 0.02901191 -0.002694029 -0.045422906 -0.05990113
## P_dece -0.17527323 -0.03244614 0.122350399 0.072108900 0.06557244
## Dim 11
## P_janv -0.099149348
## P_fevr 0.006953993
## P_mars 0.011735366
## P_avri 0.227349761
## P_mai -0.019525795
## P_juin 0.005832896
## P_juil -0.035071269
## P_aou 0.001258808
## P_sept -0.018016478
## P_octo 0.005093524
## P_nove 0.003456651
## P_dece 0.016948388
Valeur des coordonnées des variables quantitatives supplémentaires (les cols.).
res.precipit.ca$quali.sup$coord ## coord. for the supplementary categories
## NULL
Interprétation du degré d’association entre les colonnes et un axe particulier des variables quantitatives supplémentaires
res.precipit.ca$quali.sup$v.test ## v-test of the supplementary categories, signif. si > 1.96 (on arrondi à 2 !)
## NULL
Interprétation des coordonnées des individus sur les axes factoriels
res.precipit.ca$row$coord ### [ligne 1 à 74 ; colonnes 1 à 12, mais 11 dimensions !]
## Dim 1 Dim 2 Dim 3 Dim 4 Dim 5
## 1 0.100641865 -0.126061489 0.046967819 -0.131036570 -0.138682833
## 2 -0.348397228 -0.143078975 -0.155069119 0.211866042 0.108879517
## 3 -0.303502424 -0.129296938 0.010109548 -0.108013637 0.045719357
## 4 -0.441853426 -0.047439925 0.213657240 0.060716056 0.251085106
## 5 0.054478616 -0.028972351 0.079485069 -0.180015490 0.034601790
## 6 -0.019640833 0.300960720 0.181028584 0.283944959 -0.028874474
## 7 -0.051216174 0.006686847 0.094811117 -0.200722201 -0.181457412
## 8 0.237117274 -0.146432897 -0.135107194 -0.133756024 0.149599060
## 9 -0.459357020 0.040955675 0.189673932 -0.108451740 0.256352149
## 10 0.283953818 -0.186270616 0.184980896 -0.075007223 0.001018159
## 11 -0.162015066 0.074021450 -0.019219248 -0.059192652 -0.062703128
## 12 -0.206675959 -0.111020077 -0.249845039 0.198442900 -0.072760234
## 13 -0.274644339 -0.216193755 -0.195927651 0.111331469 -0.352282352
## 14 0.230815057 0.035277309 -0.033455963 -0.139266591 0.118134274
## 15 0.277901165 0.271653598 -0.015367883 0.102941279 0.175199903
## 16 0.087818266 -0.291426451 0.082121862 0.079086716 -0.104956320
## 17 0.119425980 -0.290325619 -0.055710183 -0.103772387 -0.020910133
## 18 -0.476909484 -0.165177756 0.104388765 0.124407161 -0.068748916
## 19 -0.235082437 -0.140295651 -0.065318826 -0.035789393 0.163278018
## 20 -0.487257592 0.238395528 0.290625976 0.074214096 0.062102124
## 21 -0.303145407 0.122782133 0.233458463 -0.235425874 -0.214923104
## 22 0.445627804 -0.304936608 0.166126457 0.065361710 0.080183857
## 23 -0.069542316 -0.364170966 -0.084840705 -0.065430705 -0.042035553
## 24 0.286348011 0.461231696 -0.133174567 0.034410519 -0.153470524
## 25 0.017191619 -0.022268191 0.126042635 0.084215654 -0.015560809
## 26 0.137185362 0.134347193 0.177257024 -0.192361361 -0.009772365
## 27 -0.463563786 -0.118070624 0.068721270 0.219405895 0.059198828
## 28 -0.029474490 0.330634403 -0.180206587 -0.049103228 -0.093304770
## 29 0.005253725 0.223381369 0.148526897 -0.092784451 -0.018815958
## 30 -0.321124558 0.089936006 -0.492450779 -0.087351511 0.067287820
## 31 0.042562534 -0.290298424 0.039346458 0.023246516 -0.095124123
## 32 0.297087336 -0.052747807 -0.013995244 -0.028933695 -0.027259218
## 33 0.085575668 -0.219045233 -0.036136398 0.146685834 -0.057703578
## 34 0.111019722 -0.281478017 0.024258229 0.065421790 -0.104991655
## 35 -0.126760786 -0.205926102 0.156960388 -0.156949320 0.028747419
## 36 0.442593832 -0.012260561 -0.012598384 0.025076197 0.035042337
## 37 0.094352057 -0.303881017 -0.093416883 -0.125133634 -0.193072023
## 38 -0.233870833 0.274579315 -0.509902275 -0.108702547 0.045340208
## 39 -0.135098308 -0.011636473 -0.127641177 -0.248790038 0.068083465
## 40 0.131360563 0.451977971 0.080446577 0.108095514 -0.093465312
## 41 0.424176114 -0.176036095 0.178565757 0.114784688 -0.092809048
## 42 -0.079670133 0.073093851 -0.244551973 -0.077641320 -0.007313507
## 43 0.047081250 0.245383841 0.119884647 -0.084848822 -0.055233828
## 44 0.213663048 0.195970809 0.074212036 0.040313069 -0.021639413
## 45 -0.277996388 -0.079853663 0.035815290 0.012989746 0.034935623
## 46 0.376727394 -0.131485929 -0.011452997 -0.082251466 0.125623389
## 47 -0.065488139 0.196622557 0.190318087 -0.193090470 -0.180707520
## 48 -0.054869111 0.329144878 -0.173989557 0.072374576 -0.051325937
## 49 0.399748047 -0.042890884 -0.140871673 -0.059494104 0.127440863
## 50 0.485010165 -0.142183662 -0.023397787 0.007569813 0.179031550
## 51 -0.151861029 -0.172174728 -0.084828376 -0.004136974 -0.016387626
## 52 0.067137143 0.163212735 -0.008048224 -0.160357890 0.164391354
## 53 -0.246053759 -0.230390513 -0.005748284 0.020427526 0.204279491
## 54 -0.355168805 0.007587291 0.153854238 0.015199730 0.126979081
## 55 -0.163288029 0.032300118 0.104824041 -0.326528342 -0.199594447
## 56 0.476068361 -0.016563230 -0.040962835 0.073266263 -0.005306268
## 57 -0.158535220 0.055482978 -0.047325819 0.262850038 -0.118667754
## 58 -0.510125958 0.268482645 0.605486674 -0.071323033 0.128804630
## 59 0.078844315 -0.028354181 -0.127540307 -0.054121145 0.046283560
## 60 -0.104555669 -0.297163001 0.101080964 0.066246713 -0.136066459
## 61 -0.159723965 0.164822119 0.158965649 -0.117268805 -0.105836955
## 62 0.538178882 -0.118383318 0.026952520 0.091499802 -0.029389592
## 63 -0.210822599 0.081971355 -0.156188671 -0.171758396 0.125199926
## 64 0.306340913 0.451152990 -0.004016468 -0.021886874 -0.200859830
## 65 -0.033975605 0.291022607 0.079461625 0.231380998 0.080048182
## 66 0.508768888 -0.256876916 0.060553805 -0.001184838 0.068733213
## 67 0.559818529 0.177154802 -0.007275366 0.253360890 0.277201747
## 68 -0.063552023 0.143686171 0.017987365 0.322820304 -0.130624629
## 69 -0.474482084 -0.095096064 -0.142899861 0.024460344 0.105264233
## 70 -0.170898759 0.425841861 0.052706341 0.072798620 0.033771346
## 71 0.209277200 -0.007191197 -0.041617719 -0.215356062 -0.068626188
## 72 0.266326232 0.093797981 -0.123086002 -0.047343268 -0.005982765
## 73 0.383622185 -0.170235342 -0.004882415 -0.093530219 0.244475508
## 74 0.419968336 0.290713776 0.051179000 0.056119383 -0.036696928
## Dim 6 Dim 7 Dim 8 Dim 9 Dim 10
## 1 0.101542647 0.065645483 -0.1379556316 -0.0708256780 9.666568e-02
## 2 -0.087591022 0.130379663 0.0709122456 -0.0202935548 -9.302594e-03
## 3 0.009916303 -0.047587227 0.0930159426 -0.0672962045 -1.397838e-01
## 4 0.145547075 0.030399049 -0.0434629511 0.1240994189 1.639433e-01
## 5 -0.034166917 0.091356741 -0.0771306111 -0.0125905228 4.450003e-02
## 6 -0.043994038 -0.065872475 -0.0281185334 0.0444052010 -7.884806e-03
## 7 -0.101992384 0.097346298 0.0186361018 0.0010240528 2.126865e-02
## 8 -0.079970021 0.092491096 0.1009341840 0.0110425369 1.412596e-01
## 9 0.206664770 0.130118219 0.1286977546 0.0130845911 -1.146875e-01
## 10 0.214594541 -0.020071383 -0.1481313451 0.0309031878 -8.970932e-02
## 11 -0.040065818 0.092623369 0.0349207869 -0.0569253826 -1.217338e-01
## 12 -0.125728620 0.005008566 0.0030706666 -0.0742999500 2.526517e-03
## 13 -0.257514834 -0.077474440 0.1016027975 -0.1461605116 8.305622e-02
## 14 -0.101754117 -0.017305672 0.2026498458 0.1112586977 -1.928935e-02
## 15 -0.156062816 0.053185206 -0.0661597643 -0.0514023457 -1.428416e-01
## 16 0.061463360 -0.012319332 0.0163266418 0.0297023250 7.306832e-03
## 17 0.081747454 -0.101574100 -0.1558425024 -0.0650679682 4.875396e-02
## 18 -0.015655527 0.203846403 0.2494936039 -0.1405349057 -3.471928e-02
## 19 -0.194092462 -0.144226456 -0.0047759584 0.0250743378 1.010901e-01
## 20 0.172026872 -0.118609068 -0.0339493825 -0.1107951908 1.620837e-01
## 21 0.099477536 0.094024358 0.0115611836 0.0466857651 1.588367e-01
## 22 0.134126372 0.065212996 -0.0149116697 -0.0807287845 -9.343433e-02
## 23 0.042926020 -0.170957458 -0.0245684909 -0.0128815214 -3.150056e-02
## 24 0.078384537 -0.127429559 0.1097247576 -0.0034137148 5.466933e-02
## 25 -0.259972156 -0.115644868 -0.2213729388 0.0657229058 -9.485601e-02
## 26 -0.099759879 -0.073600119 0.0049731852 -0.0254796768 -2.945664e-02
## 27 0.109485009 -0.072984835 0.0485963884 0.0238949100 1.413920e-01
## 28 0.216045729 -0.071675898 0.1086267617 -0.0039705165 -8.589829e-02
## 29 -0.076133919 0.196816742 -0.1543092937 -0.0530419549 -8.013351e-02
## 30 0.181300840 0.017160406 -0.1390179094 0.0993076286 -4.978752e-02
## 31 0.038919196 -0.052998821 -0.0452536504 0.1029089098 -4.998799e-02
## 32 0.030638585 0.067914445 0.0394535941 0.1252121997 1.194688e-02
## 33 -0.012834668 -0.108376935 -0.0225285061 0.1645592624 -9.889750e-02
## 34 0.062238490 -0.045750517 -0.0001556227 0.0267387603 -6.204418e-02
## 35 -0.046618257 -0.023279529 0.1117059668 0.0019500248 -4.220777e-02
## 36 0.127414378 -0.024821042 0.0703846405 -0.0563387910 -2.332934e-02
## 37 -0.049911933 0.064750749 -0.0505058152 -0.0904829305 2.488804e-02
## 38 0.079505861 -0.072895305 -0.0871430279 -0.0930514230 3.603395e-02
## 39 -0.015009890 -0.063556609 0.1367450062 -0.1087629771 -1.200465e-01
## 40 -0.022120394 -0.312985434 -0.0222425557 -0.0161028088 -5.235500e-02
## 41 0.092060334 0.008421823 -0.1327170482 -0.1447233762 1.079165e-01
## 42 0.074698395 0.010128533 -0.0864943205 -0.0750859446 -9.385162e-02
## 43 -0.067474263 0.130193970 -0.0988316758 0.0558374532 -7.212592e-02
## 44 -0.042073202 -0.023893891 0.0305778128 0.0577155276 2.847857e-02
## 45 0.122918453 0.097444895 -0.0495158720 -0.1409237072 7.820165e-03
## 46 -0.107034394 0.079016501 -0.0587581453 -0.0638643878 4.559164e-02
## 47 -0.131643027 0.016792223 -0.0253621011 0.0905876554 -3.214702e-02
## 48 0.221406233 0.095997212 0.0342588233 0.0191386605 6.681862e-02
## 49 -0.080376678 0.053758313 0.0482009014 -0.0140332873 8.189326e-02
## 50 -0.038064327 0.017230682 0.0002469065 -0.0503739879 1.081622e-01
## 51 -0.117470916 -0.103758315 0.1038228163 -0.0073903749 -2.261064e-03
## 52 -0.179303982 0.031644080 -0.0372986617 -0.0100637225 -1.037040e-01
## 53 -0.163009996 -0.275947045 -0.1333589871 0.0367757663 4.217060e-02
## 54 -0.116025592 -0.113964019 -0.0119193080 0.0235792643 -1.484657e-01
## 55 -0.098428765 0.011594345 -0.0557282886 0.1131926166 7.223021e-02
## 56 0.196302870 0.006862720 0.1067338433 -0.0499061915 -1.808109e-02
## 57 -0.075413526 0.140881750 0.0131795023 0.0559483492 -1.867215e-02
## 58 0.086444145 -0.308616801 0.1390269904 -0.1869803498 3.469632e-03
## 59 -0.041289448 0.005049207 0.2223852352 0.0606878871 -5.432230e-02
## 60 0.096270800 -0.032870965 -0.0692518710 0.0346171884 -6.299886e-02
## 61 -0.147330214 0.156995437 -0.0256578185 0.0173238984 2.565013e-02
## 62 0.181182816 -0.074271405 0.0793772276 0.0601539731 2.901035e-02
## 63 0.061280921 -0.007205265 -0.0482095168 0.0038835594 3.482703e-02
## 64 0.054862086 -0.106800445 -0.0432005983 0.0037949083 1.003473e-01
## 65 -0.018713652 0.215625665 -0.1159654125 -0.0096488081 6.671435e-02
## 66 0.250154557 0.040143229 -0.1077489440 -0.1039389627 -6.205664e-02
## 67 -0.141704599 -0.038807639 0.0499748412 0.0448038543 3.695158e-02
## 68 -0.021434901 0.152128624 0.0119864486 0.0657836666 -2.862476e-02
## 69 0.170371892 0.097983994 -0.0631609070 0.2028762894 2.608728e-02
## 70 -0.031278003 -0.021156317 -0.1060782378 -0.0630677878 -2.206293e-03
## 71 -0.065111317 0.001920356 0.2761923088 0.1820575442 6.552925e-02
## 72 0.116552880 -0.036083000 0.1183041652 0.0284309259 -1.945284e-02
## 73 -0.173777064 0.143104206 0.0285243276 -0.0585323794 1.127842e-01
## 74 0.032299656 -0.072076372 0.1054463668 -0.0001084125 -6.817010e-06
## Dim 11
## 1 -0.0497103047
## 2 0.0488865958
## 3 -0.0356056112
## 4 0.1103016880
## 5 -0.0219399284
## 6 0.0868120826
## 7 -0.0139326062
## 8 0.0005556039
## 9 -0.0243934092
## 10 0.0274303749
## 11 -0.0582446744
## 12 0.0094688768
## 13 0.0059179057
## 14 -0.0469299226
## 15 -0.0762307707
## 16 -0.0313961911
## 17 0.0168106920
## 18 -0.0194444402
## 19 -0.0849694473
## 20 -0.1011302020
## 21 0.0534046988
## 22 0.0764786819
## 23 0.0352810465
## 24 0.0418577454
## 25 -0.0343430985
## 26 0.0881873426
## 27 0.0307027618
## 28 -0.0917320058
## 29 0.0889174780
## 30 -0.0782560011
## 31 0.0130166118
## 32 0.0050600077
## 33 0.0282211946
## 34 0.0116274594
## 35 0.0083890534
## 36 -0.0284777140
## 37 -0.0502237107
## 38 0.0639714762
## 39 0.0328695158
## 40 0.0265948544
## 41 0.0041681759
## 42 0.0193116256
## 43 -0.0163677831
## 44 0.0243154123
## 45 -0.0606993952
## 46 0.0189392492
## 47 -0.0970610498
## 48 0.1355321968
## 49 0.0062553928
## 50 -0.0242152959
## 51 0.0018667263
## 52 -0.0041188310
## 53 -0.0281510093
## 54 0.1135432565
## 55 0.0813594929
## 56 -0.0164015684
## 57 -0.0040181946
## 58 -0.0648972240
## 59 0.1454788872
## 60 -0.0088324383
## 61 -0.0587443388
## 62 -0.0370156995
## 63 0.0437687425
## 64 -0.0520353050
## 65 -0.0170548063
## 66 0.0204985283
## 67 -0.0210575697
## 68 -0.0189589671
## 69 -0.1433180143
## 70 0.0668149693
## 71 0.0063694311
## 72 -0.0086636037
## 73 -0.0017532762
## 74 -0.0602449294
Interprétation des contributions des variables sur les axes factoriels.
res.precipit.ca$col$contrib ### [toutes les lignes ; colonnes toutes, cf résultats *eigenvalue*] pour rechercher les plus contributives dans un tableur.
## Dim 1 Dim 2 Dim 3 Dim 4 Dim 5 Dim 6
## P_janv 17.483375175 3.315249e-01 0.02729216 5.9975389 2.530172e+00 10.9090763
## P_fevr 0.637688629 1.006058e+01 0.19473700 7.0964771 4.755089e-01 5.0500053
## P_mars 2.324071100 1.786609e-04 13.37369088 12.4601521 2.027824e+00 1.1457892
## P_avri 1.611030529 1.269983e+00 1.57022731 5.6081494 2.795449e-05 4.3611876
## P_mai 0.140250317 3.040537e+01 8.46063119 1.9080157 6.984111e+00 24.9381596
## P_juin 0.003032439 2.228428e+01 48.68013922 4.5074724 1.734062e-02 8.6723701
## P_juil 29.728028913 4.065777e+00 1.32217664 18.0418717 2.672932e+00 7.0384013
## P_aou 28.352734481 1.243923e+01 1.09536066 0.1393185 9.950251e+00 4.3365620
## P_sept 6.095222874 3.399425e-01 2.66439799 28.8465479 2.778553e+01 1.6428062
## P_octo 11.491335280 3.436906e-01 6.00665456 0.1285931 1.191727e+00 0.1583095
## P_nove 1.451521192 1.318477e+01 5.14968111 14.4203082 2.460918e+01 12.1901575
## P_dece 0.681709072 5.274676e+00 11.45501127 0.8455550 2.175540e+01 19.5571753
## Dim 7 Dim 8 Dim 9 Dim 10 Dim 11
## P_janv 17.9179697 0.191415090 2.344968334 5.7164973 28.145355659
## P_fevr 6.4821165 20.196652591 25.202214138 14.6013707 0.162101410
## P_mars 1.0878551 30.528633760 8.216764531 21.7275763 0.318490360
## P_avri 10.0367701 0.014331956 2.730651178 2.8958145 66.145098231
## P_mai 1.0070830 12.789946974 0.005242742 3.0387746 1.186501276
## P_juin 0.1246546 0.365860557 4.873994340 0.8813237 0.109865288
## P_juil 6.0729716 12.878444867 9.875302409 1.3441772 2.055071859
## P_aou 1.4124331 8.178170953 24.733268841 2.6757432 0.003607532
## P_sept 8.1657849 0.001423005 2.624295984 13.4065820 0.839053639
## P_octo 45.8324374 0.009527523 6.362188261 18.1555422 0.090405267
## P_nove 1.0316786 0.011205270 4.978280440 8.7932368 0.057480630
## P_dece 0.8282453 14.834387453 8.052828802 6.7633616 0.886968850
Interprétation des contributions des individus sur les axes factoriels.
res.precipit.ca$row$contrib ### [ligne toutes ; colonnes toutes] pour rechercher les plus contributifs dans un tableur.
## Dim 1 Dim 2 Dim 3 Dim 4 Dim 5 Dim 6
## 1 0.1375528594 0.379566074 8.706519e-02 9.612557e-01 1.283955e+00 0.77084706
## 2 2.2442561090 0.665709764 1.292127e+00 3.421270e+00 1.077476e+00 0.78091040
## 3 1.2640934601 0.403498190 4.076147e-03 6.600148e-01 1.410092e-01 0.00742871
## 4 3.4999474955 0.070958319 2.378328e+00 2.724293e-01 5.555706e+00 2.09060038
## 5 0.0663111332 0.032984662 4.102390e-01 2.984666e+00 1.314994e-01 0.14358362
## 6 0.0057370610 2.369188194 1.416431e+00 4.942875e+00 6.095230e-02 0.15845878
## 7 0.0562460307 0.001686284 5.601800e-01 3.561312e+00 3.470718e+00 1.22792571
## 8 0.7821634281 0.524636710 7.380054e-01 1.025981e+00 1.530457e+00 0.48976136
## 9 4.1840159422 0.058496657 2.073191e+00 9.614070e-01 6.405585e+00 4.66213129
## 10 0.9620576267 0.728122774 1.186563e+00 2.767282e-01 6.080362e-05 3.02483710
## 11 0.3825934209 0.140459824 1.564700e-02 2.105251e-01 2.817068e-01 0.12880529
## 12 1.3739262182 0.697263267 5.835209e+00 5.221511e+00 8.370741e-01 2.79905072
## 13 1.3199047554 1.438460122 1.952200e+00 8.940849e-01 1.067518e+01 6.38799808
## 14 0.7962340550 0.032712491 4.861732e-02 1.194945e+00 1.025313e+00 0.85187416
## 15 1.4880707205 2.500829083 1.322521e-02 8.417121e-01 2.907387e+00 2.58345382
## 16 0.2160391959 4.184379074 5.490500e-01 7.222899e-01 1.516953e+00 0.58257845
## 17 0.2139644445 2.223949676 1.353146e-01 6.659616e-01 3.224407e-02 0.55188862
## 18 4.4050631312 0.929380586 6.133653e-01 1.235699e+00 4.499914e-01 0.02613212
## 19 1.2047270820 0.754652430 2.703065e-01 1.151062e-01 2.856906e+00 4.52089717
## 20 2.8487690360 1.199351467 2.945373e+00 2.724297e-01 2.274810e-01 1.95475163
## 21 1.2464085002 0.359616005 2.148370e+00 3.098906e+00 3.079760e+00 0.73886900
## 22 3.5299222203 2.907032962 1.425705e+00 3.130466e-01 5.618064e-01 1.76038606
## 23 0.0859749118 4.146620771 3.718891e-01 3.137460e-01 1.544185e-01 0.18033236
## 24 1.2829416510 5.854193898 8.064782e-01 7.637349e-02 1.811593e+00 0.52922255
## 25 0.0050425528 0.014879799 7.877408e-01 4.988204e-01 2.030830e-02 6.34789271
## 26 0.2590822228 0.437008130 1.257073e+00 2.099904e+00 6.462695e-03 0.75421104
## 27 4.5576204063 0.520011704 2.910938e-01 4.208791e+00 3.653740e-01 1.39954689
## 28 0.0145683541 3.224216638 1.582671e+00 1.666785e-01 7.176585e-01 4.30891811
## 29 0.0005371504 1.707911886 1.247679e+00 6.906426e-01 3.386930e-02 0.62097865
## 30 2.0498787355 0.282786438 1.401000e+01 6.252642e-01 4.424318e-01 3.59699431
## 31 0.0424858561 3.476074180 1.055194e-01 5.224525e-02 1.043189e+00 0.19555824
## 32 1.4690079858 0.081446973 9.474326e-03 5.743879e-02 6.079598e-02 0.08601066
## 33 0.1378415018 1.588390430 7.143328e-02 1.669542e+00 3.080897e-01 0.01706898
## 34 0.2762880431 3.123640435 3.833641e-02 3.955016e-01 1.214685e+00 0.47801211
## 35 0.2141811269 0.994132797 9.543836e-01 1.353542e+00 5.415035e-02 0.15947125
## 36 2.4712341747 0.003335294 5.819214e-03 3.270154e-02 7.615204e-02 1.12745456
## 37 0.1491517097 2.721089856 4.249205e-01 1.081472e+00 3.070128e+00 0.22976996
## 38 1.3951666178 3.382360043 1.927433e+01 1.242496e+00 2.577705e-01 0.88762848
## 39 0.2364908156 0.003085797 6.135183e-01 3.306146e+00 2.952501e-01 0.01607047
## 40 0.2771584409 5.770891319 3.020958e-01 7.736688e-01 6.897493e-01 0.04326561
## 41 2.6922014249 0.815509136 1.386574e+00 8.126895e-01 6.335604e-01 0.69810253
## 42 0.1202284864 0.177986979 3.292230e+00 4.706995e-01 4.980351e-03 0.58183230
## 43 0.0377185365 1.802025963 7.107510e-01 5.050009e-01 2.551887e-01 0.42647557
## 44 0.8083223872 1.195965877 2.834040e-01 1.186203e-01 4.075763e-02 0.17254242
## 45 1.0020346311 0.145413376 4.833624e-02 9.018771e-03 7.779177e-02 1.07844395
## 46 2.1819246686 0.467470448 5.860776e-03 4.287600e-01 1.192665e+00 0.96959651
## 47 0.0543358562 0.861466003 1.333684e+00 1.947263e+00 2.033789e+00 1.20869276
## 48 0.0402470631 2.547198528 1.176132e+00 2.886636e-01 1.731188e-01 3.60758868
## 49 2.7564785131 0.055811302 9.948572e-01 2.516931e-01 1.377183e+00 0.61348083
## 50 4.2791206415 0.646788796 2.894236e-02 4.296995e-03 2.866185e+00 0.14509357
## 51 0.3547999081 0.802121004 3.217397e-01 1.085420e-03 2.031024e-02 1.16872013
## 52 0.0742698918 0.771978872 3.101835e-03 1.746664e+00 2.188957e+00 2.91625795
## 53 1.1537121360 1.779003838 1.829976e-03 3.278013e-02 3.909122e+00 2.78756440
## 54 2.0594278224 0.001652954 1.123123e+00 1.554856e-02 1.293998e+00 1.20988341
## 55 0.4980591069 0.034276042 5.965206e-01 8.210235e+00 3.658149e+00 0.99626585
## 56 3.3946352542 0.007226945 7.304088e-02 3.314394e-01 2.073123e-03 3.17736247
## 57 0.5738901282 0.123625203 1.486295e-01 6.503317e+00 1.580647e+00 0.71488258
## 58 3.3893114978 1.651198649 1.387705e+01 2.731227e-01 1.062214e+00 0.53578036
## 59 0.0895053462 0.020358823 6.806669e-01 1.738536e-01 1.516191e-01 0.13512800
## 60 0.2730307932 3.878967898 7.416290e-01 4.518422e-01 2.273060e+00 1.27427926
## 61 0.4030344206 0.754819673 1.160219e+00 8.955887e-01 8.698991e-01 1.88775054
## 62 4.0612102304 0.345615675 2.960277e-02 4.839317e-01 5.953626e-02 2.53393323
## 63 0.7879350679 0.209503163 1.256859e+00 2.155925e+00 1.366018e+00 0.36649298
## 64 1.6922937699 6.455407775 8.454460e-04 3.561023e-02 3.576384e+00 0.29879227
## 65 0.0243350262 3.140227598 3.868511e-01 4.652586e+00 6.640375e-01 0.04064185
## 66 3.6199501174 1.623012639 1.490307e-01 8.093216e-05 3.247783e-01 4.81767298
## 67 5.3354889944 0.939714225 2.618911e-03 4.505059e+00 6.430783e+00 1.88194345
## 68 0.0803908705 0.722750108 1.871607e-02 8.550889e+00 1.669515e+00 0.05034426
## 69 3.5858787094 0.253332723 9.452595e-01 3.928463e-02 8.675807e-01 2.54513508
## 70 0.3710428035 4.051848010 1.025660e-01 2.775454e-01 7.122545e-02 0.06842002
## 71 0.5574460324 0.001157635 6.406886e-02 2.433407e+00 2.946666e-01 0.29705094
## 72 1.0571685141 0.230628811 6.562437e-01 1.377128e-01 2.622481e-03 1.11460589
## 73 2.0788073507 0.719973513 9.786056e-04 5.093922e-01 4.150207e+00 2.34828451
## 74 3.3591078163 2.830950810 1.449793e-01 2.472625e-01 1.260789e-01 0.10938194
## Dim 7 Dim 8 Dim 9 Dim 10 Dim 11
## 1 3.981428e-01 2.214797e+00 9.123227e-01 1.726079e+00 0.8960674439
## 2 2.138256e+00 7.967249e-01 1.019751e-01 2.176382e-02 1.1798809795
## 3 2.114232e-01 1.017449e+00 8.323208e-01 3.647307e+00 0.4645444973
## 4 1.127047e-01 2.901926e-01 3.697424e+00 6.553850e+00 5.8237800614
## 5 1.268622e+00 1.139018e+00 4.743256e-02 6.018093e-01 0.2871708190
## 6 4.390303e-01 1.007623e-01 3.927282e-01 1.257638e-02 2.9927166301
## 7 1.382399e+00 6.381615e-02 3.011460e-04 1.319354e-01 0.1111419270
## 8 8.096324e-01 1.214480e+00 2.271766e-02 3.775815e+00 0.0001146667
## 9 2.283945e+00 2.814346e+00 4.546400e-02 3.547550e+00 0.3150454346
## 10 3.270221e-02 2.243585e+00 1.526044e-01 1.306125e+00 0.2397202504
## 11 8.507163e-01 1.523132e-01 6.325478e-01 2.938010e+00 1.3203063429
## 12 5.489429e-03 2.598913e-03 2.378019e+00 2.792748e-03 0.0770044802
## 13 7.145540e-01 1.547945e+00 5.006292e+00 1.641911e+00 0.0163633772
## 14 3.045133e-02 5.259542e+00 2.477623e+00 7.564003e-02 0.8789167155
## 15 3.708014e-01 7.227259e-01 6.818101e-01 5.347569e+00 2.9897786155
## 16 2.892371e-02 6.398813e-02 3.309775e-01 2.034347e-02 0.7373137595
## 17 1.052996e+00 3.122185e+00 8.506153e-01 4.850290e-01 0.1132011239
## 18 5.475241e+00 1.033099e+01 5.122752e+00 3.175598e-01 0.1955269755
## 19 3.084999e+00 4.261007e-03 1.835532e-01 3.030186e+00 4.2025168646
## 20 1.148399e+00 1.185077e-01 1.972589e+00 4.287684e+00 3.2767049242
## 21 8.157481e-01 1.553481e-02 3.958969e-01 4.654405e+00 1.0328872801
## 22 5.142873e-01 3.387006e-02 1.551430e+00 2.110753e+00 2.7761117143
## 23 3.534813e+00 9.195456e-02 3.950595e-02 2.399462e-01 0.5908699767
## 24 1.728526e+00 1.614250e+00 2.441899e-03 6.360774e-01 0.7319910999
## 25 1.552339e+00 7.164879e+00 9.869728e-01 2.088096e+00 0.5373180651
## 26 5.073364e-01 2.917657e-03 1.196919e-01 1.624772e-01 2.8587103514
## 27 7.686016e-01 4.292102e-01 1.621753e-01 5.767304e+00 0.5338381516
## 28 5.861126e-01 1.695643e+00 3.540517e-03 1.683026e+00 3.7678641515
## 29 5.128641e+00 3.970894e+00 7.332551e-01 1.699783e+00 4.1083852260
## 30 3.982476e-02 3.292043e+00 2.625434e+00 6.702334e-01 3.2505137628
## 31 4.481658e-01 4.115660e-01 3.326213e+00 7.971218e-01 0.1061013494
## 32 5.222724e-01 2.220097e-01 3.494652e+00 3.231236e-02 0.0113787306
## 33 1.504077e+00 8.186289e-02 6.826197e+00 2.504113e+00 0.4002817201
## 34 3.192058e-01 4.652114e-06 2.146343e-01 1.173729e+00 0.0809220835
## 35 4.914469e-02 1.425302e+00 6.788071e-04 3.229982e-01 0.0250479881
## 36 5.287618e-02 5.355522e-01 5.362570e-01 9.339251e-02 0.2731800672
## 37 4.778944e-01 3.662276e-01 1.837019e+00 1.411597e-01 1.1284404811
## 38 9.221253e-01 1.659901e+00 2.957840e+00 4.505072e-01 2.7872907265
## 39 3.560843e-01 2.076253e+00 2.052728e+00 2.539906e+00 0.3737977177
## 40 1.070442e+01 6.809423e-02 5.577712e-02 5.988503e-01 0.3033394652
## 41 7.220117e-03 2.258455e+00 4.197080e+00 2.370255e+00 0.0069413313
## 42 1.321984e-02 1.214323e+00 1.430172e+00 2.269362e+00 0.1886207805
## 43 1.962264e+00 1.424276e+00 7.105012e-01 1.204053e+00 0.1217234271
## 44 6.877276e-02 1.418670e-01 7.898886e-01 1.953287e-01 0.2795275477
## 45 8.376055e-01 2.724182e-01 3.448477e+00 1.078550e-02 1.2755830053
## 46 6.530371e-01 4.548460e-01 8.397647e-01 4.346701e-01 0.1472469947
## 47 2.430494e-02 6.983522e-02 1.392368e+00 1.780929e-01 3.1870344359
## 48 8.381321e-01 1.344516e-01 6.557770e-02 8.118528e-01 6.5569046751
## 49 3.391486e-01 3.434275e-01 4.549414e-02 1.573556e+00 0.0180229822
## 50 3.674300e-02 9.502997e-06 6.181875e-01 2.894727e+00 0.2848183620
## 51 1.126817e+00 1.421083e+00 1.125326e-02 1.069844e-03 0.0014314879
## 52 1.122507e-01 1.964339e-01 2.234905e-02 2.410362e+00 0.0074639821
## 53 9.872016e+00 2.904189e+00 3.451562e-01 4.609576e-01 0.4032375489
## 54 1.442545e+00 1.987568e-02 1.215604e-01 4.894781e+00 5.6199857164
## 55 1.708368e-02 4.971260e-01 3.205259e+00 1.325604e+00 3.3015982802
## 56 4.799145e-03 1.462183e+00 4.995950e-01 6.660511e-02 0.1075872501
## 57 3.083214e+00 3.398741e-02 9.572085e-01 1.082853e-01 0.0098440708
## 58 8.439421e+00 2.157236e+00 6.098223e+00 2.132688e-03 1.4646857311
## 59 2.497304e-03 6.101870e+00 7.101776e-01 5.779209e-01 8.1366141145
## 60 1.835939e-01 1.026413e+00 4.008250e-01 1.348297e+00 0.0520251410
## 61 2.649067e+00 8.912187e-02 6.349623e-02 1.413791e-01 1.4556923082
## 62 5.262139e-01 7.570715e-01 6.794939e-01 1.605137e-01 0.5129909019
## 63 6.261421e-03 3.530730e-01 3.580723e-03 2.924778e-01 0.9068173410
## 64 1.399358e+00 2.883953e-01 3.477948e-03 2.469909e+00 1.3037596410
## 65 6.668301e+00 2.429390e+00 2.628449e-02 1.276262e+00 0.1637293652
## 66 1.533215e-01 1.391331e+00 2.023359e+00 7.325577e-01 0.1569070408
## 67 1.744340e-01 3.643556e-01 4.576834e-01 3.161911e-01 0.2015727208
## 68 3.133912e+00 2.450597e-02 1.153556e+00 2.218378e-01 0.1910349772
## 69 1.040359e+00 5.444971e-01 8.779571e+00 1.474408e-01 8.7356071849
## 70 3.868506e-02 1.225016e+00 6.767311e-01 8.411556e-04 1.5143606388
## 71 3.193298e-04 8.320032e+00 5.649774e+00 7.434183e-01 0.0137878281
## 72 1.320196e-01 1.787554e+00 1.613441e-01 7.671607e-02 0.0298709519
## 73 1.968015e+00 9.848736e-02 6.481177e-01 2.444033e+00 0.0011594261
## 74 6.731217e-01 1.814667e+00 2.997813e-06 1.203878e-08 1.8457268113
Interprétation des COS2 des variables sur les axes factoriels.
res.precipit.ca$col$cos2 ### [toutes les lignes ; colonnes toutes, cf résultats *eigenvalue*] pour rechercher les mieux représentées dans un tableur.
## Dim 1 Dim 2 Dim 3 Dim 4 Dim 5
## P_janv 0.6740439769 7.267230e-03 0.0003620507 0.056091158 1.984361e-02
## P_fevr 0.0413237649 3.706839e-01 0.0043421837 0.111555862 6.268413e-03
## P_mars 0.1407293374 6.151124e-06 0.2786474201 0.183027757 2.497890e-02
## P_avri 0.1714403789 7.684170e-02 0.0574963646 0.144772911 6.051580e-07
## P_mai 0.0048932938 6.031669e-01 0.1015707640 0.016148708 4.956970e-02
## P_juin 0.0000930488 3.887828e-01 0.5139715231 0.033551365 1.082409e-04
## P_juil 0.7077714656 5.503770e-02 0.0108314083 0.104199805 1.294561e-02
## P_aou 0.6774256973 1.689857e-01 0.0090051794 0.000807484 4.836247e-02
## P_sept 0.2700929674 8.564834e-03 0.0406248057 0.310081543 2.504668e-01
## P_octo 0.5083062740 8.643953e-03 0.0914231422 0.001379847 1.072357e-02
## P_nove 0.0641926237 3.315310e-01 0.0783629173 0.154701553 2.213944e-01
## P_dece 0.0362799205 1.596073e-01 0.2097641600 0.010916100 2.355277e-01
## Dim 6 Dim 7 Dim 8 Dim 9 Dim 10
## P_janv 0.076399752 0.1015394631 8.611846e-04 6.750644e-03 0.016202763
## P_fevr 0.059446194 0.0617434873 1.527312e-01 1.219481e-01 0.069563424
## P_mars 0.012603205 0.0096825425 2.157246e-01 3.715193e-02 0.096725867
## P_avri 0.084305348 0.1569952213 1.779803e-04 2.169806e-02 0.022655633
## P_mai 0.158053041 0.0051647083 5.207429e-02 1.365844e-05 0.007794568
## P_juin 0.048338987 0.0005622251 1.310061e-03 1.116732e-02 0.001988155
## P_juil 0.030439812 0.0212525622 3.578059e-02 1.755588e-02 0.002352771
## P_aou 0.018821459 0.0049604114 2.280237e-02 4.412589e-02 0.004700102
## P_sept 0.013223641 0.0531869069 7.358467e-06 8.683239e-03 0.043675498
## P_octo 0.001272047 0.2979964148 4.918041e-05 2.101390e-02 0.059041898
## P_nove 0.097929171 0.0067063973 5.782840e-05 1.643942e-02 0.028589504
## P_dece 0.189066417 0.0064790207 9.212850e-02 3.200081e-02 0.026462202
## Dim 11
## P_janv 4.063817e-02
## P_fevr 3.934073e-04
## P_mars 7.222640e-04
## P_avri 2.636158e-01
## P_mai 1.550351e-03
## P_juin 1.262536e-04
## P_juil 1.832392e-03
## P_aou 3.228058e-06
## P_sept 1.392444e-03
## P_octo 1.497660e-04
## P_nove 9.520236e-05
## P_dece 1.767828e-03
Interprétation des qualités de représentation des individus sur les axes factoriels.
res.precipit.ca$row$cos2 ### [ligne toutes ; colonnes toutes] pour rechercher les mieux représentées dans un tableur.
## Dim 1 Dim 2 Dim 3 Dim 4 Dim 5
## 1 0.0879896174 0.1380508050 1.916350e-02 1.491623e-01 1.670781e-01
## 2 0.4755763511 0.0802088909 9.421532e-02 1.758707e-01 4.644760e-02
## 3 0.5791796255 0.1051151785 6.426174e-04 7.335777e-02 1.314284e-02
## 4 0.5027847746 0.0057958036 1.175604e-01 9.493640e-03 1.623557e-01
## 5 0.0480162349 0.0135801147 1.022132e-01 5.242709e-01 1.937016e-02
## 6 0.0017390108 0.4083213934 1.477328e-01 3.634551e-01 3.758466e-03
## 7 0.0248054622 0.0004228398 8.500639e-02 3.809990e-01 3.113741e-01
## 8 0.3099384044 0.1182024050 1.006250e-01 9.862243e-02 1.233692e-01
## 9 0.5069108090 0.0040295729 8.642634e-02 2.825556e-02 1.578719e-01
## 10 0.3455709704 0.1487066980 1.466546e-01 2.411282e-02 4.442970e-06
## 11 0.3626098187 0.0756909456 5.102718e-03 4.840212e-02 5.431342e-02
## 12 0.2326581806 0.0671338344 3.400007e-01 2.144912e-01 2.883544e-02
## 13 0.1848807853 0.1145609905 9.408967e-02 3.037990e-02 3.041811e-01
## 14 0.3422481980 0.0079947297 7.190514e-03 1.245968e-01 8.965298e-02
## 15 0.3052878610 0.2917156477 9.335915e-04 4.188976e-02 1.213379e-01
## 16 0.0628153142 0.6917573072 5.493048e-02 5.094516e-02 8.972491e-02
## 17 0.0885646315 0.5233996344 1.927223e-02 6.686923e-02 2.715040e-03
## 18 0.5531112271 0.0663504210 2.650013e-02 3.763841e-02 1.149403e-02
## 19 0.3008083842 0.1071366317 2.322343e-02 6.972014e-03 1.451126e-01
## 20 0.4929118455 0.1179908243 1.753561e-01 1.143470e-02 8.006910e-03
## 21 0.2943312904 0.0482841726 1.745636e-01 1.775182e-01 1.479451e-01
## 22 0.5317824659 0.2490052955 7.390385e-02 1.144027e-02 1.721723e-02
## 23 0.0261726123 0.7177271934 3.895447e-02 2.316925e-02 9.562739e-03
## 24 0.2178538501 0.5652169629 4.712154e-02 3.146005e-03 6.257874e-02
## 25 0.0017542825 0.0029433092 9.429767e-02 4.209705e-02 1.437244e-03
## 26 0.1446842954 0.1387596020 2.415532e-01 2.844733e-01 7.341845e-04
## 27 0.6584109579 0.0427131664 1.446973e-02 1.474941e-01 1.073753e-02
## 28 0.0037253052 0.4687759608 1.392549e-01 1.033926e-02 3.733163e-02
## 29 0.0001658395 0.2998107525 1.325451e-01 5.172538e-02 2.127189e-03
## 30 0.2360663868 0.0185163043 5.551531e-01 1.746739e-02 1.036478e-02
## 31 0.0155031308 0.7211968525 1.324878e-02 4.624664e-03 7.743651e-02
## 32 0.7623588345 0.0240325570 1.691812e-03 7.231010e-03 6.418269e-03
## 33 0.0556765667 0.3647870917 9.927996e-03 1.635868e-01 2.531497e-02
## 34 0.1043520994 0.6707951070 4.982177e-03 3.623646e-02 9.332768e-02
## 35 0.1279129304 0.3375727647 1.961213e-01 1.960936e-01 6.578734e-03
## 36 0.8729900556 0.0006699143 7.073400e-04 2.802347e-03 5.472487e-03
## 37 0.0485214578 0.5033131041 4.756438e-02 8.534522e-02 2.031748e-01
## 38 0.1250928209 0.1724312175 5.946401e-01 2.702463e-02 4.701617e-03
## 39 0.1204755019 0.0008938026 1.075426e-01 4.085685e-01 3.059724e-02
## 40 0.0491495824 0.5818678576 1.843338e-02 3.328167e-02 2.488231e-02
## 41 0.5564296563 0.0958343716 9.860847e-02 4.074607e-02 2.663781e-02
## 42 0.0601300467 0.0506130072 5.665559e-01 5.710660e-02 5.067011e-04
## 43 0.0174661138 0.4744519592 1.132472e-01 5.672728e-02 2.403868e-02
## 44 0.4580455758 0.3853298238 5.525843e-02 1.630578e-02 4.698301e-03
## 45 0.5641354702 0.0465473310 9.363583e-03 1.231704e-03 8.909269e-03
## 46 0.6772510364 0.0824999787 6.259412e-04 3.228365e-02 7.530716e-02
## 47 0.0230544408 0.2078241294 1.947105e-01 2.004246e-01 1.755423e-01
## 48 0.0129711265 0.4667625951 1.304272e-01 2.256804e-02 1.134999e-02
## 49 0.7267534279 0.0083665109 9.025302e-02 1.609764e-02 7.386383e-02
## 50 0.7720796455 0.0663528849 1.796842e-03 1.880749e-04 1.052009e-01
## 51 0.2412444728 0.3101012462 7.527435e-02 1.790318e-04 2.809291e-03
## 52 0.0348424782 0.2059166244 5.007067e-04 1.987760e-01 2.089014e-01
## 53 0.2160458683 0.1894153361 1.179132e-04 1.489078e-03 1.489140e-01
## 54 0.5525152540 0.0002521437 1.036797e-01 1.011920e-03 7.062184e-02
## 55 0.1197096119 0.0046841259 4.933352e-02 4.786985e-01 1.788617e-01
## 56 0.7895524367 0.0009557238 5.845509e-03 1.870038e-02 9.808910e-05
## 57 0.1759707115 0.0215530334 1.568141e-02 4.837322e-01 9.859487e-02
## 58 0.2950992144 0.0817420721 4.157405e-01 5.768632e-03 1.881378e-02
## 59 0.0579124843 0.0074897209 1.515397e-01 2.728760e-02 1.995653e-02
## 60 0.0715683991 0.5781168228 6.689057e-02 2.873127e-02 1.212072e-01
## 61 0.1653143649 0.1760359691 1.637484e-01 8.911184e-02 7.258470e-02
## 62 0.7955124146 0.0384923717 1.995227e-03 2.299503e-02 2.372361e-03
## 63 0.3418634340 0.0516823861 1.876365e-01 2.269103e-01 1.205664e-01
## 64 0.2555004935 0.5541526551 4.392081e-05 1.304215e-03 1.098419e-01
## 65 0.0053137950 0.3898736196 2.906600e-02 2.464483e-01 2.949669e-02
## 66 0.6103455692 0.1555911396 8.646047e-03 3.310189e-06 1.113956e-02
## 67 0.6099990442 0.0610858297 1.030254e-04 1.249435e-01 1.495638e-01
## 68 0.0230086701 0.1176149969 1.843181e-03 5.936828e-01 9.720372e-02
## 69 0.6063837853 0.0243575176 5.500112e-02 1.611510e-03 2.984486e-02
## 70 0.1212431960 0.7527941908 1.153202e-02 2.200016e-02 4.734524e-03
## 71 0.2040166009 0.0002408929 8.068229e-03 2.160408e-01 2.193822e-02
## 72 0.5571882136 0.0691132014 1.190122e-01 1.760721e-02 2.811758e-04
## 73 0.4711929449 0.0927877844 7.632394e-05 2.800885e-02 1.913648e-01
## 74 0.6103098935 0.2924479218 9.063604e-03 1.089791e-02 4.659902e-03
## Dim 6 Dim 7 Dim 8 Dim 9 Dim 10
## 1 0.0895717461 0.0374355117 1.653305e-01 4.357682e-02 8.117432e-02
## 2 0.0300600747 0.0666025067 1.970214e-02 1.613567e-03 3.390619e-04
## 3 0.0006182847 0.0142386805 5.440061e-02 2.847542e-02 1.228577e-01
## 4 0.0545547572 0.0023798285 4.864790e-03 3.966114e-02 6.921707e-02
## 5 0.0188863296 0.1350259286 9.624751e-02 2.564623e-03 3.203735e-02
## 6 0.0087250947 0.0195609735 3.564247e-03 8.888944e-03 2.802622e-04
## 7 0.0983713317 0.0896131918 3.284303e-03 9.916942e-06 4.277726e-03
## 8 0.0352535960 0.0471572915 5.615980e-02 6.721818e-04 1.099980e-01
## 9 0.1026038682 0.0406730794 3.978989e-02 4.112928e-04 3.159824e-02
## 10 0.1973691042 0.0017266186 9.404501e-02 4.093063e-03 3.449189e-02
## 11 0.0221756720 0.1185140670 1.684600e-02 4.476521e-02 2.047158e-01
## 12 0.0861007032 0.0001366360 5.135748e-05 3.006876e-02 3.476824e-05
## 13 0.1625380232 0.0147118526 2.530241e-02 5.236132e-02 1.690810e-02
## 14 0.0665145839 0.0019239326 2.638186e-01 7.952082e-02 2.390277e-03
## 15 0.0962781375 0.0111817685 1.730281e-02 1.044467e-02 8.065633e-02
## 16 0.0307700650 0.0012361471 2.171149e-03 7.185826e-03 4.348646e-04
## 17 0.0414964707 0.0640661543 1.508115e-01 2.629040e-02 1.475987e-02
## 18 0.0005960407 0.1010524065 1.513768e-01 4.802960e-02 2.931447e-03
## 19 0.2050533672 0.1132242446 1.241568e-04 3.422225e-03 5.562456e-02
## 20 0.0614390670 0.0292070579 2.392852e-03 2.548554e-02 5.454198e-02
## 21 0.0316945427 0.0283149109 4.280939e-04 6.980771e-03 8.080463e-02
## 22 0.0481745660 0.0113882701 5.954455e-04 1.745204e-02 2.337773e-02
## 23 0.0099721777 0.1581702744 3.266673e-03 8.980140e-04 5.370137e-03
## 24 0.0163244173 0.0431436870 3.198793e-02 3.096217e-05 7.940803e-03
## 25 0.4011618941 0.0793813956 2.908808e-01 2.563891e-02 5.340669e-02
## 26 0.0765099072 0.0416450010 1.901407e-04 4.991070e-03 6.670712e-03
## 27 0.0367271615 0.0163208701 7.235791e-03 1.749399e-03 6.125307e-02
## 28 0.2001523170 0.0220300530 5.059911e-02 6.760258e-05 3.164013e-02
## 29 0.0348264874 0.2327434049 1.430663e-01 1.690411e-02 3.858172e-02
## 30 0.0752465766 0.0006741278 4.424138e-02 2.257628e-02 5.674508e-03
## 31 0.0129626017 0.0240379195 1.752555e-02 9.062967e-02 2.138434e-02
## 32 0.0081082769 0.0398396464 1.344511e-02 1.354205e-01 1.232821e-03
## 33 0.0012523945 0.0892987906 3.858661e-03 2.058811e-01 7.436052e-02
## 34 0.0327958594 0.0177211923 2.050438e-07 6.053178e-03 3.259140e-02
## 35 0.0173004209 0.0043141277 9.933387e-02 3.027087e-05 1.418174e-02
## 36 0.0723494872 0.0027456085 2.207773e-02 1.414535e-02 2.425513e-03
## 37 0.0135781271 0.0228518147 1.390317e-02 4.462358e-02 3.376078e-03
## 38 0.0144570123 0.0121528846 1.736783e-02 1.980279e-02 2.969642e-03
## 39 0.0014871472 0.0266636968 1.234303e-01 7.808383e-02 9.512577e-02
## 40 0.0013937201 0.2790217669 1.409156e-03 7.385724e-04 7.807394e-03
## 41 0.0262097538 0.0002193462 5.447174e-02 6.477318e-02 3.601587e-02
## 42 0.0528594941 0.0009718374 7.087216e-02 5.340941e-02 8.344186e-02
## 43 0.0358737371 0.1335617396 7.696489e-02 2.456697e-02 4.099048e-02
## 44 0.0177607374 0.0057282719 9.381293e-03 3.342221e-02 8.137411e-03
## 45 0.1102907951 0.0693143703 1.789757e-02 1.449684e-01 4.464131e-04
## 46 0.0546691075 0.0297941406 1.647523e-02 1.946313e-02 9.918952e-03
## 47 0.0931590416 0.0015158132 3.457799e-03 4.411307e-02 5.555342e-03
## 48 0.2112037038 0.0397044409 5.056695e-03 1.578138e-03 1.923609e-02
## 49 0.0293815356 0.0131433370 1.056634e-02 8.956395e-04 3.050076e-02
## 50 0.0047555061 0.0009744630 2.000900e-07 8.328621e-03 3.839824e-02
## 51 0.1443528662 0.1126187030 1.127588e-01 5.713440e-04 5.347988e-05
## 52 0.2485210582 0.0077404868 1.075399e-02 7.828898e-04 8.313324e-02
## 53 0.0948231607 0.2717299145 6.346445e-02 4.826246e-03 6.346081e-03
## 54 0.0589633610 0.0568866235 6.222669e-04 2.435203e-03 9.654439e-02
## 55 0.0434975100 0.0006035493 1.394350e-02 5.752499e-02 2.342384e-02
## 56 0.1342442324 0.0001640721 3.968685e-02 8.676632e-03 1.138916e-03
## 57 0.0398187262 0.1389627339 1.216149e-03 2.191611e-02 2.441054e-03
## 58 0.0084739203 0.1080071075 2.191853e-02 3.964653e-02 1.365149e-05
## 59 0.0158821605 0.0002375077 4.607266e-01 3.431116e-02 2.749082e-02
## 60 0.0606757705 0.0070737718 3.139707e-02 7.845303e-03 2.598313e-02
## 61 0.1406546422 0.1597145522 4.265892e-03 1.944741e-03 4.263337e-03
## 62 0.0901628582 0.0151508479 1.730555e-02 9.938533e-03 2.311531e-03
## 63 0.0288847684 0.0003993174 1.787656e-02 1.160054e-04 9.329347e-03
## 64 0.0081945737 0.0310547378 5.081141e-03 3.920887e-05 2.741531e-02
## 65 0.0016120833 0.2140283479 6.190523e-02 4.285660e-04 2.048844e-02
## 66 0.1475541880 0.0037997875 2.737542e-02 2.547367e-02 9.080529e-03
## 67 0.0390843154 0.0029313594 4.861133e-03 3.907198e-03 2.657668e-03
## 68 0.0026174340 0.1318422594 8.184908e-04 2.465295e-02 4.667846e-03
## 69 0.0781814704 0.0258593865 1.074496e-02 1.108589e-01 1.833013e-03
## 70 0.0040612299 0.0018580599 4.671240e-02 1.651181e-02 2.020718e-05
## 71 0.0197485234 0.0000171785 3.553406e-01 1.543971e-01 2.000286e-02
## 72 0.1067136684 0.0102277311 1.099447e-01 6.349741e-03 2.972625e-03
## 73 0.0966888204 0.0655686358 2.605087e-03 1.096942e-02 4.072749e-02
## 74 0.0036100491 0.0179764178 3.847517e-02 4.067020e-08 1.608071e-10
## Dim 11
## 1 2.146678e-02
## 2 9.363764e-03
## 3 7.971239e-03
## 4 3.133213e-02
## 5 7.787649e-03
## 6 3.397370e-02
## 7 1.835683e-03
## 8 1.701687e-06
## 9 1.429473e-03
## 10 3.224819e-03
## 11 4.686420e-02
## 12 4.883547e-04
## 13 8.583938e-05
## 14 1.414857e-02
## 15 2.297150e-02
## 16 8.028784e-03
## 17 1.754825e-03
## 18 9.194570e-04
## 19 3.929843e-02
## 20 2.123312e-02
## 21 9.134681e-03
## 22 1.566283e-02
## 23 6.736459e-03
## 24 4.655095e-03
## 25 7.000756e-03
## 26 5.978860e-02
## 27 2.888238e-03
## 28 3.608370e-02
## 29 4.750372e-02
## 30 1.401917e-02
## 31 1.449975e-03
## 32 2.211534e-04
## 33 6.055118e-03
## 34 1.144644e-03
## 35 5.602354e-04
## 36 3.614172e-03
## 37 1.374829e-02
## 38 9.359508e-03
## 39 7.131576e-03
## 40 2.014583e-03
## 41 5.372914e-05
## 42 3.532955e-03
## 43 2.110960e-03
## 44 5.932164e-03
## 45 2.689514e-02
## 46 1.711673e-03
## 47 5.064298e-02
## 48 7.914196e-02
## 49 1.779605e-04
## 50 1.924598e-03
## 51 3.645239e-05
## 52 1.311388e-04
## 53 2.827964e-03
## 54 5.646734e-02
## 55 2.971918e-02
## 56 9.371586e-04
## 57 1.130449e-04
## 58 4.776012e-03
## 59 1.971657e-01
## 60 5.107253e-04
## 61 2.236158e-02
## 62 3.763272e-03
## 63 1.473488e-02
## 64 7.371875e-03
## 65 1.338949e-03
## 66 9.907865e-04
## 67 8.630801e-04
## 68 2.047680e-03
## 69 5.532348e-02
## 70 1.853221e-02
## 71 1.889831e-04
## 72 5.896186e-04
## 73 9.842197e-06
## 74 1.255909e-02
fviz_ca_col(res.precipit.ca,
col.col = "contrib",
axes = 1:2,
gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"))
fviz_ca_row(res.precipit.ca,
col.row = "contrib",
axes = 1:2,
gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"))
fviz_ca_col(res.precipit.ca,
col.col = "cos2",
axes = 1:2,
gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"))
– en fonction du Cos2
## Lignes avec un cos2 > 0.8
fviz_ca_row(res.precipit.ca,
select.row = list(cos2 = 0.8),
col.row = "cos2",
axes = 1:2,
gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"))
– en fonction des contributions
## Top 5 des contributions lignes et colonnes
fviz_ca_biplot(res.precipit.ca,
select.row = list(contrib = 5),
select.col = list(contrib = 5), # si on veut toutes les variables mettre un "#" devant
#arrow = c (TRUE, TRUE), # pour mieux voir la proximité avec les axes
axes = 1:2,
repel = TRUE, # pour éviter les chevauchements dans biplot
)
Il est possible de faire des Biplots asymétriques, où les coordonnées sont pondérées par le poids de la valeur propre (en fait la racine carrée de la valeur propre eigenvalue). - Voir : Biplot asymétrique in : http://www.sthda.com/french/articles/38-methodes-des-composantes-principales-dans-r-guide-pratique/74-afc-analyse-factorielle-des-correspondances-avec-r-l-essentiel/#r-code-to-comput-ca
Identification des variables les plus remarquables (moins efficace que dans PCA car pas significatives en l’absence de test) par composante. Simple tri des coordonnées.
### fonction dimdesc() [in FactoMineR]
res.desc <- dimdesc(res.precipit.ca, axes = c(1,2))
– Pour les lignes (pour nous, les individus)
### Description de la dimension 1 pour 4 lignes
head(res.desc[[1]]$row, 4)
## coord
## 58 -0.5101260
## 20 -0.4872576
## 18 -0.4769095
## 69 -0.4744821
– Pour les colonnes (pour nous, les variables)
### Description de la dimension 1 pour 4 colonnes
head(res.desc[[1]]$col, 4)
## coord
## P_janv -0.4038006
## P_octo -0.2967389
## P_avri -0.1833434
## P_mars -0.1638102
– Pour les lignes (pour nous, les individus)
### Description de la dimension 2 pour toutes les lignes
res.desc[[2]]$row
## coord
## 23 -0.364170966
## 22 -0.304936608
## 37 -0.303881017
## 60 -0.297163001
## 16 -0.291426451
## 17 -0.290325619
## 31 -0.290298424
## 34 -0.281478017
## 66 -0.256876916
## 53 -0.230390513
## 33 -0.219045233
## 13 -0.216193755
## 35 -0.205926102
## 10 -0.186270616
## 41 -0.176036095
## 51 -0.172174728
## 73 -0.170235342
## 18 -0.165177756
## 8 -0.146432897
## 2 -0.143078975
## 50 -0.142183662
## 19 -0.140295651
## 46 -0.131485929
## 3 -0.129296938
## 1 -0.126061489
## 62 -0.118383318
## 27 -0.118070624
## 12 -0.111020077
## 69 -0.095096064
## 45 -0.079853663
## 32 -0.052747807
## 4 -0.047439925
## 49 -0.042890884
## 5 -0.028972351
## 59 -0.028354181
## 25 -0.022268191
## 56 -0.016563230
## 36 -0.012260561
## 39 -0.011636473
## 71 -0.007191197
## 7 0.006686847
## 54 0.007587291
## 55 0.032300118
## 14 0.035277309
## 9 0.040955675
## 57 0.055482978
## 42 0.073093851
## 11 0.074021450
## 63 0.081971355
## 30 0.089936006
## 72 0.093797981
## 21 0.122782133
## 26 0.134347193
## 68 0.143686171
## 52 0.163212735
## 61 0.164822119
## 67 0.177154802
## 44 0.195970809
## 47 0.196622557
## 29 0.223381369
## 20 0.238395528
## 43 0.245383841
## 58 0.268482645
## 15 0.271653598
## 38 0.274579315
## 74 0.290713776
## 65 0.291022607
## 6 0.300960720
## 48 0.329144878
## 28 0.330634403
## 70 0.425841861
## 64 0.451152990
## 40 0.451977971
## 24 0.461231696
– Pour les colonnes (pour nous, les variables)
### Description de la dimension 2 pour toutes les colonnes
res.desc[[2]]$col
## coord
## P_aou -0.288014160
## P_fevr -0.213459205
## P_nove -0.203982909
## P_dece -0.161040381
## P_janv -0.041928299
## P_mars -0.001082994
## P_octo 0.038696168
## P_sept 0.044682807
## P_avri 0.122745976
## P_juil 0.192208430
## P_juin 0.323680069
## P_mai 0.385134518
– En premier, création des graphes
# Scree plot
scree.plot <- fviz_eig(res.precipit.ca)
# Biplot of row and column variables
biplot.ca <- fviz_ca_biplot(res.precipit.ca)
– En second, export des graphes
library(ggpubr)
## Export d'un pdf (un graphe par page)
ggexport(plotlist = list(scree.plot, biplot.ca),
filename = "res.precipit.ca.pdf")
## Export d'un png par graphe
ggexport(plotlist = list(scree.plot, biplot.ca),
filename = "res.precipit.ca.png")
## [1] "res.precipit.ca%03d.png"
A l’aide de write.table() [package FactoMineR], write.infile semble inaccessible à la date de rédaction !
# Export into a TXT file de la qualité de représentation des variables
write.table(res.precipit.ca$col$cos2, "res.precipit.ca$col$cos2.txt", sep = "\t")
# Export into a CSV file des contributions des individus
write.table(res.precipit.ca$row$contrib, file="res.precipit.ca$row$contrib.csv", col.names=TRUE, sep = ";")
Le package FactoInvestigate décrit et interprète automatiquement les résultats de votre analyse factorielle (ACP, AFC ou ACM) en choisissant les graphes les plus appropriés pour le rapport (sources : http://factominer.free.fr/reporting/index_fr.html, mais ce package semble inaccessible à la date de rédaction !)
## install.packages(FactoInvestigate)
## library(Investigate)
## Investigate(res.precipit.ca)